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ABSTRACT 

VERY HIGH-SPEED ARITHMETIC PROCESSORS 

Our VHSAP ARO study has lead to a number of accomplishments including 

an original VLSI processor and a system with a high residue number system (RNS) 

content called the Gauss Machine. The Gauss machine is a Sir-ID systolic array 

architecture which takes advantage of the Galois-enhanced quadratic residue number 

system (GEQRNS) to form reduced complexity arithmetic elements. The Gauss . . . 

machine is targeted at front-end signal and image processing applications. With a 

2 x 2 array of GEQRNS multiplier-accumulators operating at 10 MHz, the Gauss 

machine can achieve a peak equivalent throughput of 320 million operations per 

second when p"erforming complex arithmetic. The Gauss machine is designed for a 

broader, more general class of problems than other RNS based systems which have 

been constructed: the Gauss machine may be used to accelerate computations which 

involve or may be expressed as matrix-matrix (level 3), matrix-vector (level 2), or 

vector-vector (level 1) operations. This paper describes the implementation of the 

Gauss machine and how it may be used to accelerate signal processing operations. 
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Chapter 1 

BASIS OF RESIDUE NUMBER SYSTEM 

1.1 The Chinese Remainder Theorem 

There are two large penalties in performing arithmetic in the two's complement sys­

tem: the carry must propagate across the entire word for addition operations, and 

the size of the multiplier grows as the square of the width of the word. The Chinese 

·Remainder Theorem (CRT) [1, 2] suggests a means of eliminating the carry propa­

gation problem and of producing a multiplier that grows linearly with the width of 

the word. The CRT is presented below. 

Theorem 1 (The Chinese Remainder Theorem) Let M = Tif=1 p;, where for 

i,j E {1,2,3, ... ,L}, gcd(p;,pj) = 1 for alii i= j, and eachp; E z+. Then there 

exists an isomorphism</>: ZM <--> Zp1 x Zp, x Zp3 X··· x ZPL desc1'ibed by the following. 

Let m; = Mfp;, and m;m;-1 = 1 (modp;) for all i E {1,2,3, ... ,L}. If 

X E ZM, let </>(X) = (:v1 , x2 , x3 , ... , X£) where x; = X (mod p;) for all i E 

{1,2,3, ... ,L} then X= </>- 1(x 1 ,x2,x3 , ... ,x£) is described by the following con­

gruence 

X= {~ m; < m;-
1
x; >p,} (mod J\!1) 

where < • >p indicates the !t'llll1'Y (mod p) opemtion. 

Th<' Ctrr forms the basis for the RNS. In the RNS, two's complement integers 

are convert.('d to their L-tuplc• residue representation by the ring isomorphism </>: 
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ZM <-+ Zp, x Zp, x Zp, x · · · x ZPL described by the CRT. The numbers which are 

in their L-tuple representation may be added and multiplied component-wise and 

reconstructed via the CRT to form the correct result in ZM. For example, consider 

the RNS system described by p, = 3, P2 = 5, and P3 = 7. Then M = PIP2P3 = 105. 

Let a = 7, and b = 9 where a, b E ZM. The numbers a and b may be mapped to 

their RNS 3-tuple representation via the mapping ¢>: 

</>(a)=(< 7 >3,< 7 >s,< 7 >7) = (1,2,0) 

cp(b) = (< 9 >3,< 9 >s,< 9 >7) = (0,4,2). 

Arithmetic may be performed on the RNS £-tuple representation of a, bE ZM 

given by the mapping</>. Let </>(a) = ( a1 , a2, a3 ,. 00, aL), and </>(b) = ( b1 , b2, b3,. 00, b£). 

Then 

where o E { +, -, x }. Consider the 3-tuple representations of a and b: 

(1,2,0) + (0,4,2) = (< 1 +O >3,< 2+4 >s,< 0+2 >7) = (1,1,2) (1.1) 

(1,2,0) x (0,4,2) = (< 1· 0 >3,< 2 ·4 >5,< 0 · 2 >7) = (0,3,0). (1.2) 

For comparison, the mapping of a + b = 16 and ab = 63 to their RNS 3-tuple 

representation: 

</>(a+ b)=(< 16 >3, < 16 >5, < 16 >7) = (1, 1,2) 

</>(ab) = (< 63 >3,< 63 >s,< 63 >1) = (0,3,0) 

(1.3) 

(1.4) 

The operations performed on the RNS representations of a and b (equations 

1.1,1.2) give !.he sarne results as t.he RNS •·epr<'S<~nt.at.ion of a+ band ab (equations 
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1.3, 1.4) performed in ZM· Now consider the restoration of the representation of 

a + b, ab E ZM from the RNS representations. For (PI, P2, p3) = (3, 5, 7) we have 

m 1 = 35, m;- 1 = 2, m 2 = 21, m21 = 1, m3 = 15, and m31 = 1. From above we have 

</!(a +b)= (1, 1, 2), and <P(ab) = (0, 3, 0). 

q,-1(1, 1, 2) = {~ m; < m;-1x; >p,} (mod 105) 

- {35 < 2 · 1 >3 +21 < 1 · 1 >5 +15 < 1 · 2 >7 } (mod 105) = 16 

q,-1(0,3,0) {~m; < m;-1x; >p,} (mod 105) 

= {35 < 2 · 0 >3 +21 < 1 · 3 >s +15 < 1 · 0 >7} (mod 105) = 63 

Thus we see that the results produced by the mapping q,-1 are as expected. 

Generally, the moduli are chosen to be small enough that the adders and multipliers 

may be implemented in a reasonably small memory-based lookup table. In a VLSI 

implementation we might leverage advanced memory technology and thereby achieve 

greater speed and smaller die area. 

1.2 Complex Residue Number System (CRNS) 

The RNS may be used to perform computations with complex numbers by using RNS 

arithmetic elements to emulate the operations which would be performed using two's 

complement hardware. The use of RNS arithmetic to perform complex operations is 

called complex RNS or CRNS. Suppose we have Gaussian integers a+ jb, c + jd E 

ZM[j]/(P + 1 ), and ,P denotes the isomorphism between the Gaussian integers and the 

CRNS: 1/;: ZM[j]/(P+1) <-> Zp, xZp, x z,,, x ··· xZPL x Zp, x Zp, xZp, x · ·· xZPL. 

Then 

(a+jb)+(c+jd) = (a+c)+j(b+d) 



5 

(a+ jb) x (c + jd) = (ac- bd) + j(ad +be) 

= 1/>-1{1/>(a)1/>(c) -1/>(b)1/>(d)} + N-1{1/>(a)1/>(d) + 1/>(b)1/>(c)}. 

While the complex addition takes only two additions, the complex multipli­

cation takes four multiplications and two additions: the CRNS requires the same 

number of additions and multiplications as the Gaussian integers. 

1.3 Quadratic Residue Number System (QRNS) 

The QRNS [3, 4] is- a variation upon the RNS which allows complex additions to 

be performed with two RNS additions and complex multiplications to be performed 

with two RNS multiplications. This enhancement is accomplished by encoding the 

real and imaginary components into two independent components. Given a prime p 

of the form p = 4k + 1 where k E Z then the congruence x 2 = -1 (mod p) has two 

solutions in the ring Zp that are multiplicative and additive inverses of one another. 

Let J and J-t denote the two solutions to the above congruence. Define a mapping 

B(a+jb) = (z,z*) 

z = (a+ ]b) (mod p) 

z* _ (a- ]b) (mod p). 

Furthermore, the inverse mapping o-t: Zp X z,,-> Z,[j]/(]2 + 1) is given by 

0-1( *) ?-1( + ·.) +. < •)-1'·-1( *) ::,z =<~ :: z >p J ~ J z-:: >1,. 

Suppose (::, z•), (w, w*) E z,, x z,. Tlteu t.lte a.ddit.iou and llllllt.iplication 
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operations in the ring < Zp x Z1, +, · > are given by 

(z,z')+(w,w*) - (z+w,z'+w') 

(z, z')(w, w') = (zw, z'w*). 

For example, consider a QRNS system with moduli p1 = 5 and p2 = 13. Let 

the Gaussian integersu,v E Z[j]/(]2+1) be given as u;, 5+j3, andv = 4+j3. In Z5 

we have 31 = 2 and 3!1 = 3. It can be seen that 2 and 3 are additive and multiplicative 

inverses of each other in Z5 and also satisfy the congruence x2 = -1 (mod 5). In 

Z13 we have 32 = 5 and 32 1 = 8. Also, 2-1 = 3 (mod 5), and 2-1 = 7 (mod 13). 

Therefore the QRNS representations of u and v are given by 

0( u) - (z.,z:) 

Zu = ( < 5 + 313 >s, < 5 + 323 >13) = (1, 7) 

< = ( < 5- }13 >s, < 5 - 323 >13) = ( 4, 3) 

O(v) - (zv,z~) 

Zv - ( < 4 + 313 >s, < 4 + 323 >13) = (0, 6) 

z' - ( < 4-313 >s, < 4-323 >d = (3, 2). v 

The arithmetic operations in the QRNS are performed in the same manner as in the 

RNS. For example: 

O(u) + O(v) = (zu + Zv, z: + z:) = (zu+v' z:+v) 

Zu+v = (< 1 +0 >s,< 7+6 >t3) = (1,0) 

-· = (< 4 +3 >s,< 3 +2 >t3) = (2,.5) "'u+v 

O(u )O(v) = (-- -'-')-(- -') -"u~v, ..:.lt.:.tl - -uv, -uv 

"-'u·u = ( < l · 0 >,, < 7 · G > "') = ( 0, :!) 
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Z~v = ( < 4 · 3 >s, < 3 · 2 >13) = (2, 6) . 

. For comparison, note that uv = 11+j27 and u+v = 9+j6. The QRNS representations 

of uv and u + v are given as 

O(u + v) = ( I •I ) 
zu.+u' zu.+u 

I 
Zu+v = (< 9+}16 >s,< 9+]26 >13) = (1,0) 

z:~v - (< 9-]16 >s,< 9 -]26 >13) = (2,5) 

O(uv) - ( I •I) 
ZUV' zuv 

I ( < 11 + ]127 >s, < 11 + }227 >n) = (0, 3) z.v -

z•l = ( < 11 - ]127 >s, < 11 - ]227 >13) = (2, 6). uv 

The above results for the QRNS representations 1.1( uv) and 0( u + v) agree with 

1.1( u )1.1( v) and 1.1( u) + 1.1( v) computed in the QRNS representation. The isomorphism 1.1 

is generally implemented by a combination of arithmetic elements and table lookup. 

Since the z and z* channels are independent we are able to easily construct parallel 

hardware to perform operations on both channels at the same time without any 

communication between the channels. This parallelism allows us to easily perform 

a complex addition or multiplication in one cycle. While parallel hardware would 

allow us to perform a CRNS addition in one cycle, the multiplication in the CRNS 

requires two additions and four multiplications. Using the same amount of hardware 

as a QRNS multiplier-accumulator, a CRNS multiplier-acculnulator would take twice 

as many cycles t.o complete a singl<! multiply-accumulate opN<).I.iou. 
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1.4 Galois Enhanced QRNS (GEQRNS) 

The QRNS requires us to implement a multiplier which takes N bit inputs and pro­

duces an N bit output. The multiplier could be implemented using either a direct 

implementation with modular correction or a lookup table. The primary disadvan-

tage of this is that despite the small size of the RNS adder, the multiplier is still 

large. We may take advantage of the properties of Galois fields [5] to simplify the 

implementation of an RNS multiplier. 

For any prime modulus p there exists some a E Zp that generates all non­

zero elements of th~ field GF(p). That is to say {a' I i = 0, 1, 2, ... ,p- 2} = 

GF(p) \ 0. Thus, we may uniquely represent all non-zero elements of Zp by their 

exponents. These number theoretic logarithms may be added modulo p-1 to produce 

multiplication: a<i+j>P-1 =< aiaj >p· Note that since zero is not an element of 

G F(p) \ 0 the zero must be handled as an exception. Practically, this means that the 

inputs must be checked before the number theoretic logarithm to determine whether 

either one is a zero, and if one of the inputs is a zero, then the output of the multiplier 

should be set to zero. 

For example, suppose that p = 7. Then a = 3 generates GF(7) \ 0: {3' I 

i = 0, 1, 2, 3, 4, 5} = {1, 3, 2, 6, 4, 5}. Suppose we wish to multiply 2 and 3. First we 

would take the number theoretic logarithm of 2 and 3 to the base a = 3: 

log3 (2) = 2 ~ 32 = 2 (mod 7) 

log3(3) = I ~ 31 = 3 (mod 7). 

In order to multiply 2 and 3 we now add the number theorct.ic logarithms modulo 

7J- 1: 

•). 'l -< •>2. ·>I > -< ·j<HI>, >--< •j'~ >-- (>" _, o - o) o) 7- ' 1- 0 1- • 
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The architecture of a GEQRNS multiplier is illustrated in Figure 1.1 without 

the zero detection and handling indicated. The multiplier requires two duplicate 

N-entry memories to perform the number theoretic logarithm, and an N + 1-entry 

table to perform the modulo p- 1 correction and number theoretic exponentiation. 

Note that while the modulo p - 1 correction and number theoretic exponentiation 

represent two separate steps, they may be integrated into a single table. Typically, 

the multiplicands will be converted to the GEQRNS number theoretic logarithm form 

by the conversion engine which computes the residues of the integer inputs. 

Figure 1.1: Block Diagram of a GEQRNS Multiplier 

1.5 1-CRT 

The £-CRT [1, 2] offers an alternative to the CRT which has the advantage of in­

tegrating scaling into the CRT and avoiding the need for a modulo M adder. The 

L-CRT is computed by factoring !11 into a real scale factor V and an integer !If'= 2\ 

where k E z+, such that M = V M', and 0 < M' < M. Additionally, as for the 
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CRT, m; = Mfp;. The L-CHT is given as 

Xs = {~lm; < m;-1x; >p; /VJ} (mod M'), 

where l• j denotes the least integer or floor function. Since M' = zk where k E z+ 

we may compute the sum Xs using regular k-bit two's complement adders. The 

lm; < m;-1x; >p; /VJ term for any fixed set of moduli is dependent only upon x; 

and thus may be generated using a small, fast memory based table lookup. The 

disadvantage of the L-CRT is that it may introduce an error into the computed Xs. 

The error in the L-CRT is given by 0 :S: IX/V- Xsl < L. For front-end signal 

-
processing applications this error is not critical since L ~ M. A block diagram of 

two L-CRT engines is shown in Figure 1.2. 

The L-CRT has the advantage of avoiding the modulo Madder required to im-

plement the 'true' CRT and provides a means of scaling without additional hardware. 

For VLSI and discrete implementations this advantage is particularly important since 

division, like multiplication, are space-time intensive and cannot be performed in the 

RNS since it is division-free. 
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Chapter 2 

INTRODUCTION 

2.1 Motivation 

There exists a need for an environment appropriate to the task of developing ex­

perimental array processors. This need is indicated by the large I/ 0 requirements 

and physical size of experimental array processors. Traditional environments such as 

personal computers or larger systems such as the VME bus are not appropriate as 

they lack adequate space and I/0 capabilities. Thus the motivation is established for 

the development of a testbed for experimental array processors. 

Additional capabilities are desirable. In particular, beyond the need to solve 

physical form factor problems and I/0 bandwidth bottlenecks, there is an additional 

desire that the system should be host independent. The ideal host interface for 

achieving host independence is the SCSI interface. The SCSI interface exists on 

all common personal computers and workstations. There also exist a number of 

peripherals which may take advantage of the SCSI interface, thus allowing the testbed 

to utilize a number of mass storage and data acquisition products. 

2.2 Design Parameters 

Given the motivation presented in the previous section, the design parameters are 

described a.s follows. The control of the array processor and the SCSI interface require 

substantial machine intdligene<~. Thus the sdecl.ion of a microprocessor is required. 
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The Motorola 68030 was selected since it is capable of sustaining block data moves 

of approximately forty megabytes per second (at 20 MHz), and because of previous 

design experience with the 68000 family. First generation SCSI controller chips such 

as the NCR 8350 require substantial processor intervention in order to operate: each 

byte transferred causes an interrupt to occur. Additionally, these first generation 

SCSI controller chips were only capable of asynchronous operation at data rates of 

approximately 1.6 megabytes per second while many hosts operate synchronously at 

a maximum data rate of five megabytes per second. A second generation device was 

selected, the Western Digital33C93A. The WD33C93A (second sourced by Advanced 

Micro Devices and sometimes referred to as the Am33C93A) executes SCSI commands 

independently of the host processor and is capable of transmitting large quantities 

of data without host intervention. For purposes of debugging, the array processor 

testbed also features RS-232C serial communications. 

Memory requirements for the testbed are modest. The testbed need only 

buffer data transactions between the host and array and perform some translation 

of commands from the host to the array. Thus it was determined that the testbed 

processor would only require one megabyte of high speed RAM and 128 kilobytes 

of ROM. Since the processor typically is moving large, contiguous blocks of data 

between the SCSI processor and the array processor, a memory architecture which 

performs well in block operations is desirable. A dynamic RAM variant called static­

column RAiVI (SCRAM) is particularly well suited to this task. The SCRAM is 

fundamenta.lly a standard DRAM, however, once the row address has been latched 

into the deYice, the device operates as a static RAM for all subsequent accesses 

to that rOll' of memory. These accesses may occur until refresh is required. The 

advantage t.o this means of I!JelliOry operation are t.hat. a 70 ns device offers 35 ns 
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access times during static column operation. The static column mode of operation 

is synergistic with the 68030's burst mode of operation. Using the burst mode of 

operation the 68030 may read four longwords with reduced penalty. In particular, in 

the burst mode of operation, the worst-case first word read time is two clock cycles (at 

20 MHz, Tcycle = 50ns ). Subsequent accesses in non-burst mode still execute in two 

clock cycles. Subsequent burst-mode accesses execute in one clock cycle. Thus, the 

maximum memory bandwidth without burst access is forty megabytes per second, 

while the maximum memory bandwidth with burst access is sixty-four megabytes per 

second. 



Chapter 3 

IMPLEMENTATION 

This chapter describes the implementation of the InvestiGATOR array pro­

cessor testbed. The description is broken into modules reflecting the various major 

components of the backplane: the CPU, the memories, the I/0 components, the 

array interface, and remaining miscellaneous material. 

3.1 Architecture 

The InvestiGATOR backplane and SCSI control processor is constructed from sev­

eral discrete blocks. These blocks may be divided into four groups. The first, the 

CPU is based upon the Motorola MC68030. The second, the memory, consists of 

one megabyte of high performance static-column RAM, and 128 kilobytes of low 

performance EPROM. The third group is the I/0 module which includes a high per­

formance SCSI port, dual RS-232C serial ports, and an I/0 expansion port. The 

fourth group is the array bus and interface. A block diagram of the InvestiGATOR 

is shown in Figure 3.1. 

The SCSI port is a single-ended, eight-bit implementation supporting syn­

chronous transfers up to five megabytes per second. The SCSI port has a local 

thirty-two kilobyte buffer which allows the central processor to operate without in­

terference while transfers are underway. SCSI packets may be transferred either to or 

from the InvestiGATOR with as few as two interrupts of the central processor. This 

autonomous opemtion allows the CI'U to dedicate a larg<· p<~rcentageof its processing 
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Figure 3.1: Block Diagram of the InvestiGATOR Array Processor Testbed 

budget to servicing the attached experimental array processor. 

The serial port supports two RS-232C channels with programmable baud rates 

of up to 9600 bps. The serial port is intended to act primarily as a debugging tool. 

The I/0 expansion port has a full thirty-two bit data bus, twenty-bit address bus, and 

interrupt capabilities. This bus may be used to attach data acquisition, additional 

I/0 capabilities, or memory. 

The RAM block is based upon static-column RAM supporting synchronous 

and burst-mode accesses. This memory offers very high performance in block trans-

fers. 

3.2 CPU Module 

This section describes the generation of the various signals which are used in the 

CPU module to service the l'I'!CGSO:JO, and signals which are used to interface with 

external devices and busses. This section refers to schematics which are found in 

Appendix A. A block diagram of the CPU JrHHillle with il.s major subsystems is 



shown in Figure 3.2. 
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Figure 3.2: Block Diagram of CPU Module 

3.2.1 Cache Control 
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The MC68030 provides a mechanism whereby external circuitry may indicate to the 

68030 which addresses are cachable, the cache inhibit input, CIIN*. CIIN* is gener­

ated by PALO and inhibits the cache when accessing the 1/0 and array addressing 

spaces. Additionally, the 68030 provides a means for disabling the cache from ex­

ternal hardware, primarily for debugging purposes. This is the cache disable input, 

CDIS*. CDIS* may be asserted or negated using switch S3. 

The primary reason for the selection of the MCGSO:!Q as the control proces-

sor of the InvestiGATOR was its on-chip instruction/data cache and burst cache 

fill mechanism. The 68030 provides a means of bursting four longwords of instruc-
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tions or data into the cache. This is accomplished using the MC68030's cache burst 

request/acknowledge (CBREQ* /CBACK*) handshaking protocol. When the 68030 

runs a bus cycle in which it can execute a burst fill of the cache it asserts the CBREQ* 

signal. If the addressed device wishes to proceed with a burst fill of the cache it must 

acknowledge the burst request with CBACK*. In a zero wait state system the 68030 

can read four longwords in eight cycles (i.e., forty megabytes per second) using stan-

dard bus cycles while the same four longwords can be read in five clock cycles (i.e., 

sixty-four megabytes per second) using burst mode. There is support for burst filling 

of the cache from the RAM module only (see Table 3.2). A burst acknowledge on the 

part of the RAM module is passed through a D flip-flop clocked 180 degrees out of 

phase with the 20 MHz system clock in order to stretch the CBACK* signal. 

3.2.2 Interrupt Control 

The MC68030 provides a seven level prioi·itized interrupt mechanism using the IPL0-

2* signals. PALl provides priority encoding of the various interrupt signals generated 

in the InvestiGATOR. The majority of the signals are provided to I/0 devices, how­

ever, there is also an interrupt line reserved for the array bus. The prioritization of 

the interrupt sources is given below: 

I Request Priority I Description 

7 NMI (Non-Maskable Interrupt). Reserved. 
6 SCSI Port. 
5 Reserved. 
4 SIO port. 
3 Reserved. 
2 l/0 Bus. 
1 Array Bus. 

Table :l.l: luterrupt Priority LcvelH 
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The InvestiGATOR uses the MC68030's interrupt autovcctor mechanism to 

vector interrupts. This is accomplished by asserting the AVEC* input of the 68030 

when an interrupt acknowledge cycle is executed. AVEC* is generated by PALO using 

a clocked output. AVEC* is asserted when PALO detects an interrupt acknowledge 

cycle. The 68030 also provides one additional signal related to interrupts, the !PEND* 

(interrupt pending signal). The !PEND* signal is not used by the InvestiGATOR. 

3.2.3 Address Space Decoding 

-Address space decoding is provided by PALO. PALO decodes four primary address 

spaces: RAM space, ROM space, I/0 space, and array space. These address space 

signals are address strobe qualified. This address space arrangement consumes sixty­

four megabytes of the four gigabyte available address space, however, the sixty-four 

megabyte space is repeated (i.e., A26-A31 are ignored). Accesses to memory spaces 

besides program and data space are ignored (with the exception of interrupt acknowl­

edge cycles which run in CPU space) and will result in a bus fault after a timeout. 

Address space decoding is summarized in Table 3.2. 

I Address Range I Description 

c Oh-lFFFFh ROM space. 
20000h-FFFFFh 1/0 space. 

B,C lOOOOOh-FFFFFFh RAM space. 
1000000h-3FFFFFFh Array space. 

C=cachable, B=burst cycle support. 

Table 3.2: Address Space Decoding 
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3.2.4 Bus Cycle Termination 

The 68030 provides two mechanisms for normal termination of bus cycles: asyn­

chronous termination and synchronous termination. Both means of termination are 

supported by the InvestiGATOR. The synchronous termination mechanism is a high 

speed termination mechanism for use with thirty-two bit data ports only. In practice, 

only the RAM space and array space use synchronous termination. The MC68030's 

synchronous termination input, STERM* is generated by taking the logical OR of 

the two possible sources of synchronous termination requests, and then using aD flip­

flop clocked 180 degrees out of phase with the 20 MHz system clock to stretch the 

STERM* signal, see Figure 3.3 

RAMST' 
MC68030 

r-.----------1J a 
ARYST' 

C~L~K~2~0--------------~----------~CLK 

Figure 3.3: STERM Signal Input and Conditioning 

The asynchronous bus cycle termination mechanism allows for dynamic bus 

sizing for eight, sixteen, and thirty-two bit ports. The asynchronous termination 

signals, DSACKO* and DSACKl *, are provided by PALlA which generates the ap­

propriate DSACKs for various ports (primarily I/0). 

3.2.5 Abnormal Bus Cycle Termination: Bus Error Control 

It is possible to attempt to access addresses for which there is no corresponding 

device. In this event it is necessary for external circuitry to l.c'nninat.e the bus cycle. 
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Additionally, it may be desirable to terminate an I/0 or array bus cycle with an error 

condition. Bus cycles may be terminated with a fault condition by assertion of the 

MC68030's BERR* signal. Assertion of the BERR* signal is controlled by the BERR 

control state machine, located on MACH2. This state machine tracks bus cycles and 

asserts BERR* when the I/0 or array busses request, or in the event of a timeout, 

indicated by the trickle count output of an eight bit watchdog timer (counter). A 

state machine diagram is given in Figure B.l. 

3.2.6 Byte Select Signals 

The CPU module provides byte select signals (UU*, UM*, LM*, and LL*) to external 

modules by decoding the AO, Al, SIZO, and SIZl outputs of the 68030. These byte 

selects are decoded by PALlA and are not qualified by the address strobe. 

3.2. 7 Miscellaneous Signals 

The InvestiGATOR does not support multiple bus mastering in the controller so the 

BR* (bus request) input is negated. The BG* (bus grant) signal is ignored and 

the BGACK* (bus grant acknowledge) signal is negated. The MC68030's memory 

management unit may be disabled using the MMUDIS* input to the 68030. Access 

to this signal is provided using switch S4. 

3.3 Memory Module 

This section describes the operation of the RAM and ROl\1 modules. The RAM ar­

chitecture is based upon a single thirty-two bit wide bank of iOns static column RAM 

(SCRAM) wit.h a capacity of one megabyte. The SCRAl\1 controller is based upon 

a high density PLD, the AMD Mach 110, with high resolution timing generated by 
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the AMD Am2971A programmable event generator (PEG). The ROM architecture 

is based upon a single eight-bit wide bank of EPROM with a capacity of 128 kilo­

bytes. The ROM is only intended for SCSI control processor diagnostic and operating 

code. Time critical code sections are moved from the ROM to the main memory, the 

SCRAM. Microcode and data may be loaded from the host after boot. In situations 

where the InvestiGATOR is being used as a standalone data collection unit microcode 

might be loaded from a non-volatile semiconductor disk resident on the I/0 bus. 

3.3.1 Static Column RAM 

The InvestiGATOR contains a one megabyte bank of SCRAM. The SCRAM is used 

as an alternative to standard DRAM because of its high speed access properties: 

sequential accesses to the same column proceed substantially faster than an access to 

the same speed rated standard DRAM. The SCRAM achieves no-wait-state operation 

when operating in static column mode. This is an attractive property when coupled 

with the 68030's burst mode and when one considers that the primary use for this 

bank of RAM will be to perform SCSI block transfers. 

There are penalties to pay for the high performance of the SCRAM: SCRAM is 

fifty per cent to one-hundred per cent more expensive than standard DRAM, SCRAM 

requires significantly more control logic than standard DRAM, and in the event of a 

non-static column mode access, there is a substantial penalty to pay in cycling a new 

row address. However, given the design constraints, the static column architecture is 

the best solution. 

The SCRAM architecture is composed of several components. There is the 

SCRAM itself, data transceivers, address multiplexer, address cornparator, burst 

count.e•·, n.fn•sh timer, high-time resolution sequencer, and byt.c select decoder. A 



block diagram of the SCRAM architecture is shown in Figure 3.4. 
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The burst counter serves to cycle the two lowest order bits of the address 

during burst accesses. For example, if an access is a miss in the 68030's internal 

cache, caching is allowed, and the target of the access supports burst mode accesses 

then in order to keep latency (from the execution unit's point of view) minimal the 

required word is read. Then the next longword address, modulo four, is read, and 

so on until four longwords have been read. The burst counter is integrated onto the 

PLD which contains the controller state machine. 

The address comparator serves to allow the controller to determine whether 

an access is a static column hit. The address comparator contains both a register 

and a comparator so that the previous row address can be stored for comparison with 

future accesses. Note that refresh cycles do not invalidate the register contents of the 

address comparator. Validity of the contents of the address comparator is controlled 

by the state of the RAS signal: the contents (and thus tl1e output) of the address 

comparator are valid if and only if RAS is asserted. 

The refresh counter is n. simple Pight bit counter whose trickle-count output 
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sets a refresh request to the controller state machine. The refresh counter issues a 

refresh request 256 cycles (T=50 ns) after it is reset for a net of one request every 

12.8 ms resulting in each of the 512 rows of RAM being refreshed every 6.6 ms, 

meeting the required 8 ms refresh cycle period. 

The controller issues commands to the sequencer to perform operations on the 

RAM. The sequencer is an AMD Am2971A programmable event generator (PEG) 

which is capable of generating sequences of signals with 10 ns timing resolution. Some 

of the signals are ronted directly to their targets while others are routed through a 

PLD which provides byte select coding, primarily for write operations. Additionally 

the controller handles all handshaking with the CPU. The state machine must handle 

a number of conditions: 

• Refresh cycle 

• Static column miss, read without burst 

• Static column miss, read with burst 

• Static column hit, read without burst 

• Static column hit, read with burst 

• Static column miss, write 

• Static column hit, write 

Examining the controller state machine diagram (see Figure B.3) we see that 

the state machine implements the read sequences using a variety of shared state 

sequences. By sharing state sequences we arrive at a much more efficient implemen­

tation of the controller state machine. 
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The following refers to Figure 3.5. The static column RAM device is dependent 

upon four control signals: chip select (CS), row address strobe (RAS), write strobe 

(WR), and output enable (OE). RAS, WR, and OE are generated by the PEG and 

fed directly to the SCRAM devices while the CS signal is generated by the PEG it is 

subject to byte select coding by PAL4 using the byte select signals (UU, UM, LM, LL) 

generated by the CPU module. The data lines are buffered using four Am29C861A 

CMOS bus transceivers under the control of the SCRAM controller state machine. 

The address lines are multiplexed by a pair of Am29C827 A bus drivers acting as a 

row/column address multiplexer under control of the controller via the PEG. 

::> 
0.. 
(.) 

Mach210 - OER• 
) Data Transceiver Control OET• 

REFCLR• 
CBREQ• Controller ) Refresh Counter Control 
As· State Reo· 

RfW Machine CLKEW 
) Address Comparator Contr 

RAMSP• 
HSA• 

RESEr TRIG Am2971 A RAS• 

ol 

RAMCBACK• PA wE· 

RAMST• BANKSEL• OP 
Sequencer LOE• 

yiNC,LATCH uoE· 
A, ~: Address Counter -

I A 
PAL16L8 

A .I , ~ 
cs· 

uu· uucs· 

UM• 2 uMcs· 
LM• LMcs• 
LL• LLcs· 

1 : Address Bank Decoder 
2: Byte Select Conditioned Chip Selects 

Figure 3.5: SClli\IVI Controller Architecture 

The rcl'rcsh conntt•r operates in a free counting mod<', driven by the 20 MHz 
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system clock. Two-hundred fifty-six clock cycles (12.8 ms) after a counter reset 

the trickle-count output (RCO) is asserted for one clock cycle which in turn sets the 

refresh request SR flip-flop in the controller state machine PLD. After the completion 

of the current memory transaction the controller resets the counter and the refresh 

request SR flip-flop via the CLRREF signal and orders the PEG to execute a hidden 

refresh cycle. Under worse case conditions a refresh request could suffer a response 

latency of up to twelve clock cycles (600 ns). Thus, under these worse case conditions 

a hidden refresh cycle might be executed every 13.4 ms implying a refresh of every 

row of the SCRAM every 6.9 ms, still within the required 8.0 ms. 

The controller handshakes with the CPU module via the AS, CBREQ, RAMSP, 

Read/Write, CBACK, and STERM signals. The R/W, AS and RAMSP signals are 

used in conjunction with additional address decoding provided by PAL4 (via the 

BANKSEL signal from PAL4) to initiate memory transactions. The CBREQ/CBACK 

handshaking pair is used to control burst cycles. 

The controller orders the PEG to execute sequences using the PA2-0 and 

TRIGx outputs. The PA2-0 signals provide an address to the PEG to determine 

the starting point in its memory for execution while the TRIGJ/TRIGK outputs are 

fed through a negative- edge triggered flip-flop to generate a trigger signal which will 

arrive at a time when the PEG address inputs (PA2-0) are guaranteed valid and cause 

the PEG to begin execution with minimal latency. The chip select signals generated 

by the PEG are gated using the byte selects generated by the CPU module with 

controller override via the CSALL signal. The PEG also generates the RAS, WR, 

and OE signals used by the SCRAM. Additionally, the PEG controls the address 

multiplexer via the AREG signals which control the output. cnahl<:s of the address 

dri vcrs. 
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The address comparator is a combination register/comparator. The controller 

causes the comparator to latch a new row address using the CLKEN signal. When 

the address comparator determines that the row address at its input matches that 

stored in its internal register it signals the controller using the HSA signal. Finally, 

the data transceivers are controlled by the OER and OET controller signals. 

The burst address counter is integrated into the controller PLD. This counter 

is a simple two-bit counter with load and increment controls from the controller state 

machine, load inputs Ail,O, and AOl,O. Negation of the load or latch and increment 

controls implies a hold state. The outputs of this counter are fed through the address 

multiplexer to the SCRAM array. Note that since the least significant bits of the 

column address are fed through the burst address counter, the presentation of a new 

column address to the SCRAM array is limited by both the address multiplexer and 

the speed with which the address counter can latch a new address and present it to 

the address multiplexer. 

The SCRAM must be verified each time the power is applied. There are 

standard algorithmic test methods which facilitate functional testing of the DRAM 

and detection of common faults [6]. The standard test methods discussed in [6] are 

targeted primarily at functional testing of DRAMs in VLSI testers, not testing of 

the memory in circuit. These methods may be adapted with the addition of tests 

to exercise the surrounding architecture. In particular, during testing of the first 

InvestiGATOR board, a stuck-at fault (SAF) was discovered in one of the address 

multiplexer buffers. A test to find SAPs in the address multiplexer buffers is given 

in figure 3.6. Once the address multiplexers arc verified the data transceivers should 

be verified. Note that malfunctioning data transceivers could potentially mask or 

silllulatc an address multiplcxt•r Si\F, thus, spc•cial precaution should be taken in 



29 

the implementation of the address multiplexer SAF detection so as not to cause an 

erroneous conclusion as to the status of the address multiplexers. 

for i=O to n-1 
M[O] :=0 
M[2"i] :=1 
if M[O] !=0 then there exists an SAO fault ~ bit i 
M[0]:=1 
M[2"i]:=O 
if M[2"i] !=1 then there exists an SAl fault ~ bit i 

end 

Figure 3.6: Pseudo-Code for Address Multiplexer SA Fault Detection 

Once the status of the surrounding architecture is verified, [6] suggests that 

tests for unlinked SAFs, unlinked transition faults (TFs), unlinked coupling faults 

(CFs), linked CFs, linked CFs and TFs, address decoder faults (AFs), and various 

pattern sensitive faults (PSFs) be conducted. It turns out that two tests will provide 

fault coverage for SAFs, TFs, AFs, linked CFs, linked TFs, unlinked idempotent, and 

unlinked inversion CFs: the March C and March B algorithms. 

Each march element of a march sequence consists of an arrow pointing up or 

down, indicating the direction of march in address space, and a sequence of read and 

write operations. For example, 1t indicates an address sequence from zero ton- 1, 

while .(1. indicates an address sequence from n - 1 to zero. The March C algorithm is 

given in Figure 3.7. The March B algorithm is given in Figure 3.8. Both the March C 

and March B algorithms assume that an initial1t(w0) march is executed to initialize 

the memory before the test algorithm is executed. 

The most common PSFs which occur are neighborhood pattern sensitive faults 

(NPSFs). NPSFs are faults where the writing of memory cells adjacent to a base cell 

will cause an unwanted transition in the base cell. The cells most likely to effect a 
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{ lt(r,wl); 1f(r,w0); 1f(r); .t).(r,wl); .tJ.(r,wO); .t).(r); } 

Figure 3.7: March C Algorithm for Memory Testing 

{ lt(r,wl,r,wO,r,wl); lt(r,wO,wl); .tJ.(r,wO,wl,wO); .tJ.(r,wl,wO); } 

Figure 3.8: March B Algorithm for Memory Testing 

base cell - and thus expose an NPSF - are the four cells adjacent to the base cell 

in the north, south, east, and west directions. A basic NPSF detection algorithm, 

suggested by (6] is given in Figure 3.9. 

write all base cells with zero; 
for each base cell 

apply a pattern; 
read base cell and compare against expected value (zero); 

end; 
write all base cells with one; 
for each base cell 

apply a pattern; 
read base cell and compare against expected value (one); 

end; 

Figure 3.9: A Basic NPSF Detection Algorithm 

3.3.2 ROM Controller and Architecture 

The InvestiGATOR contains a single bank of 12SK x 8-bit wide (128 kilobytes) 

EPROM. This ROM is a low performance memory which contains basic firmware 

for the InvestiGATOR and may contain some firmware for the array under test. 

ROM read cycles are executed in tlm~e clock cycles yielding a net bandwidth of 

6.67 megabytes per second. Code~ segments demanding higher perforrnancc may be 
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shadowed to the RAM space. 

3.4 I/0 Bus and Devices 

The InvestiGATOR supports an I/0 bus through which it communicates with the out­

side world. Currently the I/0 bus contains a SCSI controller, and a serial (RS-232C) 

port. The SCSI controller utilizes the Western Digital 33C93A SCSI bus controller 

chip and contains a thirty-two kilobyte data buffer. The serial I/0 controller uses the 

AMD Z85C30 ESCC (Enhanced Serial Communications Controller) to provide two 

channels of RS-232 I/0. Allowances are made for the addition of peripherals to the In­

vestiGATOR's I/0 bus. Some of the allowances include a wired-OR interrupt request 

line and three data transfer acknowledge lines: one for each size data port supported 

by the MC68030. The accessibility of the I/0 bus is intended to compensate for the 

potential unavailability or unsuitability of a SCSI bus equivalent peripheral. 

3.4.1 SCSI 

The SCSI port is built around the Western Digital 33C93A SBIC (SCSI Bus Interface 

Chip). The SCSI port is designed to use a form of I/0 called DBA (direct buffer 

access ) for data block transfers. Using DBA, the SBIC performs block transfers 

directly to and from a thirty-two kilobyte local buffer memory without processor 

intervention. This allows the SBIC to achieve its rated five megabyte/second data 

transfer rates and allows the control processor to avoid the performance penalties 

associated with interrupt servicing overhead. A block diagram of the SCSI port 

architecture is depicted in Figure 3.10. 

The SBIC operates in two modes during normal opemlion in t.he InvestiGA­

TOR: direct. addressing mode and DBA mode. In t.Ju, direct. addressing mode the 
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Figure 3.10: Block Diagram of the SCSI Port 
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processor performs transactions with the SBIC by using hardware assisted time mul-

tiplexing of the address and data to the SBIC address/data port. Direct addressing 

mode contrasts with indirect addressing mode where the processor first would write 

an address to the SBIC and then the next SBIC access would be performed on the 

register whose address was written in the previous cycle. Indirect addressing mode 

carries obvious penalties since two real accesses are required for every data transac-

tion. The SBIC normally is kept in a DBA stand-by mode: that is, whenever the 

processor is not accessing the SBIC or RAM buffer the SBIC is in DBA mode. When 

the processor attempts to perform a transaction with the SBIC or RAM the SBIC is 

switched out of DBA mode so that the transaction may proceed. 

In DBA mode the SBIC has control of the RAM buffer. Reads and writes 

are accomplished using the SBIC read enable and write enable signals. Since the 

SBIC has no means of handshaking with external logic when performing individual 

transactions with the buffer RAM, it is up to the control architecture to ensure 

that the transaction meets the SI3JC's timing requirements. Additionally, the SBIC 

provides no direct control of the address counter; rath<~r, the control of the counter is 

implicit. After each buffer read or writ<' op<'ration, the counter must. be incremented 
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by the external hardware. The control logic determines when to increment the counter 

by observing the read and write strobes. Address counter control in DBA mode is 

performed by observing the RE and WE strobes which are controlled by the SBIC in 

this mode. 

The SCSI-2 specification gives a list of commands which a processor on the 

SCSI bus can implement. Some of the commands listed are optional while others are 

mandatory under the SCSI-2 specification. A table of these commands and whether 

the InvestiGATOR responds to the commands is given in Table 3.3. 

Command Name Notes 

0 Change Description Not Implemented. 

0 Compare Not Implemented. 

0 Copy Not Implemented. 

0 Copy and Verify Not Implemented. 

M Inquiry 

0 Log Select 

0 Log Sense 

0 Read Buffer Used to read program memory and control 

store. 

0 Receive Used to transmit command and data packets 

to InvestiGATOR. 

0 Receive Diagnostic Results Used to retrieve diagnostic results. 

M Request Sense 

M Send Used to receive command and data packets 

from InvestiGATOR. 

M Send Diagnostic Used to request diagnostics to be performed. 

M Test Unit Ready 

0 Write Buffer Used to load program memory and control 

store. 
0-o tiona! p M-mandator • a.ccordin ,. to SCSI-2 definition. ), g 

Table :L:l: SCSI-:2 Connnand Set 
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3.4.2 SIO 

The serial I/0 interface is provided for software development and diagnostic purposes. 

The serial controller is based upon an AMD Z85C30 Enhanced Serial Communications 

Controller (ESCC). The ESCC-I/0 bus interface is composed simply of an eight-bit 

buffer and a PAL-based controller. 

The ESCC supports two channels of serial communications and independent 

baud rate generation. Two channels of serial I/0 are supported by the InvestiGATOR 

since the additional cost is minimal. In the case of the InvestiGATOR the baud rate 

is generated by dividing down the 10 MHz system clock to the appropriate baud rate. 

The baud rate is programmed by providing a time constant for each channel. The 

time constants appropriate to some common baud rates assuming fcLK=10 MHz, 

and a clock multiplier of sixteen are provided in Table 3.4. 

I Desired Baud I Time Constant I Actual Baud I Per Cent Difference I 
300 1044 299.904 -0.032 

1200 262 1201.92 0.159 

2400 132 2403.85 0.158 

4800 67 4807.69 0.155 

9600 35 9469.70 -1.296 

19200 18 19531.3 1.510 

Table 3.4: Time Constants versus Baud Rates for Enhanced Serial Communication 

Controller 

The ESCC's registers are mapped in I/0 space as described in Table 3.5. 

The serial ports are bwught out to Dl39 connectors on the back of the In-

vestiGATOR. The signals arc translated via the RS-232C level compatible MC1448 

transmitter and MCH'l9 receiver. This transmitter/receiver pair WilB chosen for its 

robustness. The pinout of th<• lnvcstiGi\TOH.'s serial ports is non~standard and de-
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I Address I Description 

20800h Channel B Control Register. 
20801h Channel B Data Register. 
20802h Channel A Control Register. 
20803h Channel A Data Register. 

Table 3.5: Enhanced Serial Communication Controller Register Memory Map 

picted below in Figure 3.11. 

Figure 3.11: InvestiGATOR Serial Port Pinout 

A cable suitable for connecting the InvestiGATOR to an IBM PS/2 host 

was constructed according to the diagram in Figure 3.12.· The cable is suitable for 

XON/XOFF flow-control protocol and is not suitable for hard wire (i.e., REQ/ ACK 

or RTS/CTS) protocols. Note that the InvestiGATOR end of the cable does not 

have the usual data set ready (DSR) and ring indicator (RI) inputs. Furthermore, 

the InvestiGATOR does not offer a protective ground (PGND) input. The protective 

ground wire from the terminal side of the cable should be connected and provide 

grounding for the cable shielding. However, the signal ground (SGND) is connected. 

3.5 l/0 Expansion 

The I/0 expansion connector is intended to allow unforeseen problems to be ad-

dressed. The 1/0 expansion connector is •napped to the to 1/0 address space and 
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DB-25 DB-9 

Rl(22) DTR(9) 
DSR(6) +--J 
RTS(4) DCD(6) 
CTS(S) ~ 
DCD(S) RTS(3) 

4 CTS(2) 

Rx(3) Tx(S) 
Tx(2) Rx(7) 

SGND(7) SGND(1) 

PGND(1) 

Figure 3.12: InvestiGATOR to IBM PS/2 Serial Cable 

may be used with eight, sixteen, and thirty-two bit data bus sizes. Wired-OR lines 

are provided for asynchronous bus cycle termination and interrupts. The port is fully 

buffered and the address lines and control lines are always turned on, thus allowing 

the I/0 expansion connector to be used to probe system activity. A list of signal 

names, pin numbers, and description of the signals' functions are given in Table 3.6. 

I Pin Number I Signal Name I Description 

0-31 D31-0 Data bus. 
32-51 A19-0 Address bus. 

52 AS* Address strobe. 
53 DS* Data strobe. 
54 IOSP* I/0 address space flag. 

5.5 IOSDTACK* Eight bit port DTACK. 
56 I016DTACK* Sixteen bit port DTACK. 
57 I032DTACK* Thirty-two bit port DTACK. 
58 IOIRQ* I/ 0 expansion port IRQ line. 

Table 3.6: I/0 Expansion Connector Signa.ls 
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3.6 Array Bus 

The array bus is a connection rich environment. Previous experience and analysis 

has led to the conclusion that interboard connectivity was lacking in traditional host 

environments such as the PC-XT, PC-AT, EISA, MicroChannel, VME, and others. 

The InvestiGATOR has a 324 signal connector. Seventy-five of the signals 

on this bus are allocated for a memory mapped interface to the MC68030 SCSI 

control processor. These signals are fixed in terms of arrangement and function. The 

remaining signals are broken up between near-neighbor connections and broadcast 

connections which are functionally undedicated a priori. One-hundred forty of these 

signals are wired as near-neighbor connections where seventy of the signals go to 

the right adjacent slot and the remaining seventy go to the left adjacent slot. The 

remaining one-hundred nine signals are wired as a broadcast bus to the array. All 

of the near-neighbor connections are array broadcast connections are invisible to the 

MC68030 CPU. A breakdown of the allocation of these signals is listed in Table 3.7. 

3.6.1 CPU to Array Bus Interface and Architecture 

The CPU is interfaced to the array bus via a memory mapped interface using a total 

of seventy-five signal lines on the backplane connector. The interface to the array 

bus buffers the CPU signals and passes all signals necessary for data and instruction 

transactions to take place. A breakdown of the allocation of these signals is listed in 

Table 3.7. 

This interface does not support alternate address spaces via the 68030's func­

tion code (FCx) outputs, dynarnic bus sizing (i.e., all ports are thirty-two bits), nor 

does it support burst mode accesses. Each slot has its own STEllM signal which is 

routed to the CPU by the interrace. STEHI\1 validity is ascertained by observation 
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of the SLOTENx signals. Each slot has a wired-OR SLOTEN (active-low) signal 

which is held high if a card is not present in a slot. If a card is present and needs 

to be able to assert STEil.M then it must assert the SLOTENx signal by wiring the 

signal directly to ground. The STERMx and SLOTENx signals are unique at each 

connector and are hidden from the other slots. 

The array bus error (ARYBERR) and interrupt request (ARYIRQ) signals 

are wired-OR. ARYBERR causes a BERR cycle to be executed by the 68030, while 

ARYIRQ requests a level one priority 68030 IRQ. 

3.6.2 Local (Near-Neighbor) Connections 

The local slot connections consist of seventy· signal lines to each adjacent slot. While 

these connections are not predefined, they are adequate to implement a sixty-four bit, 

bidirectional communication port or a pair of thirty-two bit unidirectional ports to 

each adjacent slot. These signals are unused in the Gauss machine implementation, 

but will be used in a future TMS320C40 hypercube implementation. 

3.6.3 Array Broadcast Bus 

The array broadcast bus consists of the remaining 109 signal lines not used in the near­

neighbor connections or the CPU-array interface. Like the near-neighbor connections, 

the broadcast connections are not defined a 1n·io·ri. These connections are intended 

to handle control and data distribution. The assignment of these signals for the Gauss 

machine is discussed in Section 6.2. 
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3. 7 Support Circuitry 

This section describes the miscellaneous modules that provide the critical support 

functions which are not a proper part of any of the major modules of the architecture. 

3.7.1 Clock Generator Module 

The clock generator module consists of three components: the crystal time base, 

the clock generator, and a low-skew buffer. The crystal timebase is a 40 MHz TTL 

compatible clock. This clock drives an AMD Am2971A PEG (Programmable Event 

Generator) which produces phase locked versions of 2 MHz, 5 MHz, 10 MHz, and 

20 MHz clocks. Finally, since the PEG has a relatively low power output drive, the 

clock signals are buffered by an AMD Am29C827 A high-speed CMOS bus driver. The 

Am29C827 A features low tpv, low skew, and "edge-rate control" which is intended 

to minimize ground bounce. 

The clock module produces one copy each of the 2 MHz and 5 MHz clocks, two 

copies of the 10 MHz clock, and six copies of the 20 MHz clock. The various copies of 

the 20 MHz clock are reserved for distribution to different modules, with the intent of 

minimizing clock skew within each module. The clock distribution reservation table 

is shown in Table 3.8. 

3. 7.2 Reset Circuit Module 

The reset circuit module contains power-up and on demand system reset circuitry. 

Power-up reset is provided by a Texas Instruments TL 7705A Power Supply Supervi­

sor/Reset Generator. The power-up reset circuit monitors system power and asserts 

the RESET signal for an amount of time conl.rolled by Cl. Cl has been chosen to 

be greater tha.n 40t<F, thus, RESfo:T will b<' ass<•rted for at i<•a.st 500 ms after the .5V 



40 

supply rail reaches within ten per cent of 5V. 

The reset signal provided by the TL 7705A is buffered into the wired-OR sys­

tem RESET* signal by an open-collector inverter. The reset circuit contains a reset 

switch connected to the system RESET* signal. 



41 

I Pin Number I Signal Name I Description 

1 SLOTENx* Slot enable. Wired-OR. 

2 STERMx* Synchronous bus cycle termination. 

3 ARYDS* Data strobe. 

4 ARYAS* Address strobe. 

5 ARYR/W Read/write strobe. 

6 ARYUU* Upper byte select. 

7 ARYUM* Upper-middle byte select. 

8 - ARYLM* Lower-middle byte select. 

9 ARYLL* Lower byte select. 

10 ARYARYSP* Array address space select. 

11 ARYRMC* Read-modify-write signal. 

12 RESET* System reset. 

13 HALT* System halt. 

14-45 D31-0 Data bus. 

46-75 A29-0 Address bus. 

79 CLK20C 20 MHz system clock. 

81 CLK10B 10 MHz system clock. 

83 CLK5 5 MHz system clock. 

85 CLK2 2.5 MHz system clock. 

77,82,84,87 Vee 5 V power bus. 

76,78,80,86 GND Ground rail. 

88-? - Near neighbor connections. 

Odd pin numbers to left slot. 

Even pin numbers to right slot. 

?-324 - Broadcast bus. 

Table 3.7: Array 13us Signals 
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Signal I Frequency I Reservation/ Availability I 
GLK2 2 MHz Unallocated 

CLK5 5 MHz Unallocated 

CLK10a 10 MHz I/0 module 

CLK10b 10 MHz Array module 

CLK20a 20 MHz CPU module 

CLK20b 20 MHz I/0 module 

CLK20c 20 MHz Array module 

CLK20d 20 MHz RAM module 

CLK20e 20 MHz ROM module 

CLK20f 20 MHz Unallocated 

Table 3.8: Clock Reservation 
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SOFTWARE 

The InvestiGATOR's firmware is written primarily in C. Besides being readily 

available for the 68030 architecture, the C language offers high level language ben-

efits of compactness and ease of use combined with some of the benefits associated 

with assembly language, mainly control and speed. The InvestiGATOR firmware is 

modular in nature, composed of a kernel, SCSI bus interface (SBIC) firmware, serial 

I/0 (SIO) firmware, and interface code to the target processor, the Gauss machine. 

A block diagram of the software architecture is shown in Figure 4.1. 

I Kernel 

t t t 
I SBIC Firmware I I SIO Firmware I Target Array 

Interface Firmware 

t 
ISBIC (Am33C93A) I I SIO (Z85C30) I Target Array 

Figure 4.1: InvestiGATOR Software Architecture Block Diagram 

4.1 Kernel 

The primary mission of the kernel is to manage resources and control dispatch of 

tasks to the various subsystems. The key resource which is managed by the ker-

ncl is memory. Tl~e kernel also n1anages the dispatch of interrupts to the various 
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subsystems. 

4.2 SBIC Firmware 

The SBIC firmware is responsible for managing the substantial SCSI protocol. The 

following sections introduce the operation of the SCSI bus and the structure of the 

SBIC firmware. 

4.2.1 SCSI Bus Operation 

The SCSI bus has four phases of operation. The SCSI bus idles in the bus free 

phase. When a device wants to gain control of the bus, the bus enters the arbitra­

tion phase. During the arbitration phase all devices attempting to gain control over 

the bus arbitrate for the bus. The device with the highest SCSI ID wins the arbi­

tration. After successful arbitration the bus enters the selection phase. During the 

selection phase the SCSI bus master attempts to select the device with which it wants 

to communicate. After successful selection the bus enters the information transfer 

phase. The information transfer phase is characterized by the transfer of commands, 

data packets, and messages. A flow diagram of the SCSI phases is shown below in 

Figure 4.2. 

There are two types of devices on the SCSI bus: initiators and targets. Initia­

tors are typically host processors while targets are typically peripheral devices such as 

disk drives. The InvestiGATOR operates as a target. The InvestiGATOR responds 

to the commands test unit ready, request sense, send and receive. These operation 

of the these commands are shown in Figures 4.3-4.6. 

The test unit ready command is used to query t.he t.arget device as to its 

sl.atus. This command is mandated by the SCSI sl.<tnda.rd. The InvestiGATOR will 
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Figure 4.2: SCSI Bus Phases 

respond with a goo~, check condition, or busy status code. The good status code 

indicates that the InvestiGATOR is ready and standing by for a command. The 

check condition status code indicates that the InvestiGATOR is not ready and has 

additional status information available. Finally, the busy status code indicates that 

the InvestiGATOR is busy. The transactions required to execute a test unit ready 

command are shown in Figure 4.3. 

Initiator (Host) Target (InvestiGATOR) 

Acquire Target & Transmit Command 

1) Win arbitration 
2l Select tar¥et 
3 Transmit EST UNIT READY Respond to Command 

1) Transmit {GOOD I CHECK CONDITION I 
BUSY) status 
2} Transmit COMMAND COMPLETE 

Finish Transaction message 

1) Release bus 

Figme 4.3: Test Unit Ready Command Operation 

The request sense command is used to query the device for extended status 

data. Typically, the requc•st sense command is executed after" check condition status 
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is returned on a command. The transaction model for the request sense command is 

shown in Figure 4.4. 

Initiator (Host) Target (InvestiGATOR) 

Acquire Target & Transmit Command 

1) Win arbitration 
2) Select tar~et 
3) Transmit EOUEST SENSE Respond to Command 

1) Enter DATA IN phase 
2) Transmit sense data 
3~ Transmit GOOD status 
4 Transmit COMMAND COMPLETE 

Finish Transaction message 

1) Release bus 

Figure 4.4: Request Sense Command Operation 

The send and receive commands are the primary data communication com-

mands between a host processor and the InvestiGATOR. The transaction models for 

the send and receive commands are shown in Figure 4.5 and Figure 4.6. 

Initiator (Host) Target (InvestiGATOR) 

Acquire Target & Transmit Command 

1) Win arbitration 
2) Select tar~et 
3) Transmit END Respond to Command 

1) Enter DATA OUT phase 
2) Transmit data 
3) Transmit {GOOD I CHECK CONDITION I 

Finish Transaction 
BUSY} status 
4) Transmit COMMAND COMPLETE 

1) Release bus 

Figure 4.5: Send Command Operation 
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Initiator (Host} Target (InvestiGATOR) 

Acquire Target & Transmit Command 

1) Win arbitration 
2j Select tar~et 
3 Transmit ECEIVE Respond to Command 

1) Enter DATA IN phase 
2~ Receive data 
3 Transmit{GOOD I CHECK CONDITION I 
BUSY) status 

Finish Transaction 4) Transmit COMMAND COMPLETE 

1) Release bus 

Figure 4.6: Receive Command Operation 

4.2.2 SBIC Firmware 

The SBIC operates under an interrupt driven protocol. This subsection discusses 

the flow diagram of the SBIC reset routine and the interrupt service routine (ISR) 

depicted in the flow diagram of Figure 4. 7. 

Before the SBIC can be used, it must be initialized via a software interrupt. 

The SBIC is preloaded with the SCSI address of the InvestiGATOR before a software 

reset is executed. After the reset completes, interrupts and data I/0 modes are 

programmed. Initially, the InvestiGATOR is set to SCSI address 4 and uses interrupt 

drive I/0. 

The InvestiGATOR operates only as a target in the initial configuration. The 

InvestiGATOR does not support disconnectjreselection at this time so the firmware 

is fairly simple. The SBIC interrupts the processor with a service required interrupt 

when an initiator on the SCSI bus selects the InvestiGATOR. Selection may occur 

either with the attention (ATN) signal asserted or negated: ATN asserted indicates 

that there is a message pending. Selection with attention is used exclusively to 

request that the target. accept. an !Dl~NTIFY message. The InvestiGATOR does not 
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currently support the IDENTIFY message, and thus selection with attention leads 
to a fault condition. 

After the SBIC ISR identifies a selection without attention condition, the 
ISR prepares the SBIC to receive a command from the initiator. Currently the 
InvestiGATOR only supports a SCSI command set which is (coincidently) limit ted 
to those commands which have six byte command frames. Thus, a transfer count of 
six is loaded into the transfer count register and a RECEIVE COMMAND command 
is issued to the SBIC. The SBIC then receives a command from the initiator. 

If a data phase is required by the command received from the initiator then 
the SBIC is prepare_d for a data phase by setting the synchronous transfer control 
register and the transfer counter register and issuing a send or i·eceive data command. 

If the command received was a linked command then a SEND STATUS com­
mand is issued to the SBIC and the execution returns to the RECEIVE COMMAND 
phase. If the command was not a linked command then a SEND STATUS AND 
COMMAND COMPLETE command is issued to the SBIC, causing the last com­
mand's status to be transmitted to the initiator and the SBIC to disconnect. 

4.3 SIO Firmware 

The serial port is operated in an interrupt driven I/0 mode. The SIO drivers sup­
port circular transmit/receive buffers which aid in increasing system throughput and 
allowing type-ahead. The XON/XOFF flow control protocol is the only flow control 
protocol currently supported. In the current implementation serial port A is the 
console (stdinjstdout) while serial port B is unassigned. 
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Figure 4.7: SBIC Interrupt Service Routine Flow Diagram 
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Chapter 5 

INTRODUCTION 

The Gauss machine is a 2 x 2 systolic array processor comprised of three 

seven-bit GEQRNS channels for a total of six seven-bit RNS channels. The array 

of processors is arranged in a mesh-connected topology with unidirectional dataflow. 

Alternately, the Gauss machine may be configured to utilize two of its processors as 

a vector processor. The Gauss machine excels in computation of level 3, level 2, and 

level 1 operations. 

5.1 Motivation 

The design of the Gauss machine is motivated by several factors. There exists a 

need for high-performance front-end signal processors which are reliable, small, con­

sume minimal power, and are relatively inexpensive. Typically, high performance is 

achieved using a combination of fast processors coupled with some parallelism. Sig­

nal processing applications have been demonstrated to be particularly amenable to 

systolic array implementations[?]. Traditional technologies have typically featured 

large, multiple package designs where individual processors were made up of several 

large VLSI devices[8]. Even new, state-of-the-art processors designed for parallel 

processing, but based on conYentional arithmetic technology such as the iWarp[9] or 

TMS320C40(10] have at least one large package per processor element. These designs 

typically had large physical form factors, high power consumption (multiple watts 

per processor), and low reliability. At.l.<!rnpt.H to improve reli;\bility by incorporat-
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ing redundancy typically result in little improvement at the expense of greater than 

one-hundred per cent in terms of hardware, power, size, and cost. 

Processor architectures based upon residue arithmetic are uniquely qualified 

to meet the demanding needs of modern signal processing systems. The RNS is a high 

performance system of arithmetic having performance which is independent of word­

width. The RNS features relatively small die area when compared with conventional 

arithmetic. The RNS is inherently fault and defect tolerant[3, 4], and may realize the 

full potential of VLSI systolic arrays[7]. 

5.2 Design Parameters 

Currently, there are no RNS systems which are general purpose in nature. Most RNS 

systems are hard-wired to a specific task. There exists a need to demonstrate an RNS 

system which is more general purpose in nature. This RNS system must be capable 

of many different operations. Additionally, there is motivation to demonstrate the 

use of the RNS in systolic array architectures. 

The Gauss machine is designed as a discrete prototype of a 2 X 2 x 6 VLSI 

systolic array of GEQRNS multiplier-accumulators. The array is hosted by the In­

vestiGATOR array processor testbed. Data conversion functions are provided by the 

InvestiGATOR. The array controller is a microprogrammed controller based upon a 

single chip microsequencer. 
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IMPLEMENTATION 

6.1 Architecture 

The Gauss machine supports a three channel GEQRNS or QRNS, 2 x 2 array of seven 

bit multiplier-accumulators. The array is formed by six boards, with each board 

comprising a 2 x 2 array seven bit multiplier-accumulators. The array is integrated 

into the InvestiGATOR array processor backplane with the addition of a controller, 

and optionally, a forward-conversion and CRT engine board. 

The Gauss machine supports a mesh connected geometry with north and east 

flow of data. The array uses FIFOs to provide the means for data to be sequenced 

through the array. The FIFOs are the gateway through which the array communicates 

with the outside world. Additionally, the Gauss machine offers a vector mode of 

operation which utilizes PEs (1,1) and (1,2) to perform Ievell and level2 operations 

at higher performance levels than would be possible using the full array. A block 

diagram is given below in Figure 6.1. 

The FIFOs located on the periphery of the army meet the goal of allowing 

concurrency in processing and dat.a I/0 since the memories may he loaded or emptied 

as calculations proceed. 
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Figure 6.1: Block Diagram of Gauss Machine Array 

6.2 Processor Implementation 

Each processor element in the array (see Figure 6.1) consists of a multiplier, accumu­

lator, and support architecture. The inputs to the multiplier come from the X-bus 

andY-bus. The X-bus is also connected to the F-bus, allowing the accumulator to be 

pre-loaded, or the output of the adder may be output to the X-bus. A block diagram 

of the processor element is depicted below in Figure 6.2. 

D y 
C1) 
:::> 
co D y 
>- F Bus 

D y 
X Bus 

>-
0 

Figure 6.2: Block Diagram of Gauss Machine Processor Element 

The arithmetic units in this discrete implementation are direct lookup tables 

implemented in static RAM. In a VLSI implement<ttion these arithmetic units would 

be implemented wit.h adders and Slllitll norvr lookup t<tbles. Additional architectural 
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enhancements are made to PEs (1,1), and (1,2) to allow these two processors to 

operate as a very high throughput vector processor. The array architecture in vector 

mode is shown in Figure 6.3. The augmented processor is depicted in Figure 6.4. 

Figure 6.3: Block Diagram of Vector Mode Architecture 

DYI--~ 

F Bus 

X Bus 

Figure 6.4: Augmented Processor Element 

The X-bypass-bus of the enhanced PE is connected to the X-FIFOs, allowing 

two operands per cycle to be deposited on each of the enhanced processors. The X­

escape bus of PE (1 ,1) allows the results to be flushed out of the processors in one clock 

cycle. The vector enhancement allows the Gauss machine to perform Ievell and level 

2 operations very efficiently, and while the enhancement does not allow an addition 

of two operands to be perfonn('d directly, it may be performed in two cycles using 
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the accumulator. The vector processor can also perform pointwise multiplication of 

two vectors using a single clock cycle per operand pair. 

6.2.1 Processor Control Signals 

This section lists the processor control signals and their function. The control signals 

are registered on the processor boards. The signals are listed in Table 6.1. 

The signals in Table 6.1 may be broken into several groups. These groups are: 

• Address information: BA2-0, and PA2-0. 

• FIFO Control< XIW*, YIW*, XOW*, XIR*, YIR*, XOR*, XIFLRT*, YI-

FLRT*, and XOFLRT*. 

• Adder RAM Control: ROE*, ARWE*. 

• Multiplier RAM Control: MROE*, MRWE*. 

• X-Bus Control: XBOE*, XBEN*, XFEN*, AREN*, and AROE*. 

• Y-Bus Control: YBEN*. 

• Processor Structure Control: PREN*, and SREN*. 

• Processor Configuration Control: VECTORMODE and ARITHMODE. 

• Miscellaneous: CLR*, RESBWE*, and RESBRE*. 

6.3 Controller Implementation 

The Gauss machine uses a microprogra.mmable controller. The heart of the controller 

is a single chip microsequencer with EPROM based microprogram store, the AMD 

Am29CPL 154. The microcode store has a total of 512 words of microinstruction 
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storage. The microsequencer uses PLDs to decode its instructions for the array. The 

architecture of the controller is depicted in Figure 6.5. The Gauss machine controller 

has a pipeline delay model depicted in Figure 6.6. 

Memory Mapped 
InvestiGATOR 

Interface 

,- Status 
Register 

Command 
Register f--+ Am29CPL154 

~icrosequencer 
f.-+ Command 

Decoder 
f-A rray 

Figure 6.5: Block Diagram of Gauss Machine Controller Architecture 
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Figure 6.6: Gauss Machine Pipeline Delay Model 

In order to perform an operation on the array, the InvestiGATOR will load 

some data into the array input FIFOs, and order the controller to perform the ex­

pected operation by writing a command to the command register. The InvestiGATOR 

then monitors the status register in m·der to determine when the computation is corn-

plete. Then the lnvest.iGi\TOH retrieves t.he res11lt.s from the army output FIFOs. 
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This same method is used for programming the array multipliers and adders, except 

that there is no need to read back any results. 

The chosen microsequencer, the Am29CPL154 has a relatively narrow output 

word (eight bits), yet the array has a substantial number of control lines as evidenced 

by Table 6.1. Fortunately, this does not present a problem because there are only a 

limited number of useful combinations of control signals. Therefore, the output word 

of the microsequencer is used as a command code or instruction and is decoded into 

the appropriate set of signals by the command decoder, see Figure 6.5. 

6.4 Array Initialization 

In order to perform useful operations on the array, the arithmetic elements must be 

initialized. There exist enhancements which are not visible in the block diagram of 

Figure 6.2 to allow programming of the multiplier. The adder can be programmed 

without any architectural enhancements. 

The multiplier and architecture related to its programming is depicted in Fig­

ure 6.7. Control signals are indicated in the block diagram. The multiplier memory 

is addressed by the X-bus and Y-bus, and by the ARITHMODE signal. The multi­

plier data is loaded from the X-bus to the multiplier memory. Register output enable 

signals are indicated by an OE suffix while latch enable signals are indicated by an 

EN suffix. The write strobe for the memory is indicated by the MRWE* signal. The 

MRWE* signal is broadcast to all processors in the system so all of the multipliers 

must be programmed at the same time. 

Programming of the multiplier proceeds as follows. The X- and Y- FIFOs are 

loaded by the InvestiGATOR. The InvestiGATOR sends a conunand to the Gauss 

machine controll<•1· to program a block of the multiplier memory. X- input FIFO 
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Figure 6.7: Processor Multiplier Programming Model 

transmits the contents of the memory location across the X- bus to a register which 

outputs to the multiplier memory's data bus. Next, the address of the data word 

to be programmed is propagated across the array from the X- and Y- input FIFOs 

and the multiplier memory's write line is strobed. The process is repeated until the 

multiplier is programmed. 

The adder and architecture related to its programming is depicted in Fig­

ure 6.8. The adder is programmed as follows. The adder data and addresses are 

loaded into the X- input FIFO. The least significant portion of the address is trans­

mitted via the X-bus to the product output registers, controlled by PROE* and 

PREN*, with MROE* negated. Next, the most significant word of address is trans­

mitted and loaded into the accumulator register, controlled by SROE* and SREN*. 

Finally, The actual data word is transmitted via the X-bus to the F-bus by way of 

the buffer controlled by XPOE*, and to the adder memory's data port. The adder 

memory write signal, ARWE*, is strobed, loading the dat.a into the adder memory. 

This process is reJwatt•d nntil the adder is progranuned. 
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Figure 6.8: Processor Adder Programming Model 

6.5 Conversion Engine Architecture 

The forward conversion engine performs the task of generating the residues of the 

value input to the engine. This forward conversion is a relatively straightforward 

process once it is seen that the process may be accomplished simply by breaking the 

input values into a set of partial sums where each sum represents a range of bits of 

that number; in other words, suppose we wish to compute the residue modulo p of 

an L bit number N. We would note that the following congruence holds: 

(mod p), 

where a; E {0, 1} and are digits of the binary representation of N. Now, suppose 

0 < J < !( < L - 1. Then 

(mod p). 
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A (mod p) operation may be added after each partial sum without changing the 

result: 

[(J-1 ) (l\-1 ) (L-1 ) ] < N >p= ~ a;2; (modp) + t; a;2; (modp) + ;; a;2; (modp) (modp). 

This suggests that each partial sum, modulo p, can be computed using a small table, 

and the partial sums added together to form a sum which must be corrected modulo p. 

This is illustrated in Figure 1.2. In Figure 6.9a, conversion of a twenty-four bit input 

using two tables of order 212 to produce an eight bit output is demonstrated. In 

Figure 6.9b, the same conversion is accomplished using three tables of order 28
• 

Partial Mod 

12 Partial Mod 

(a) 

(b) 

Figure 6.9: Forward Conversion Architecture 

The forward conversion engine was not implemented in hat·dware since it would 

be relatively expensive to produce it discrete implcmentittion. Instead, the forward 

conversion engine Wits implemented with a software architecture inspired by the above 

discussion. This was motivat.l'd by the low speed of it direct implementation of the 



forward conversion using the standard sequence of divide, multiply, and subtract 

operations. In particular, the multiplication and division operations are particularly 

time consuming on the MC68030 (and most microprocessors). The source code in 

Section D.5 of Appendix D implements a high speed forward conversion based upon 

table lookup using small tables and minimal arithmetic (addition and subtraction 

only). 

Similarly, the CRT engine hardware was too expensive to implement; emula­

tion of the CRT was substituted. As for the forward conversion, the QRNS to CRNS 

to Gaussian integer conversion was implemented using a fast, table lookup based 

algorithm based upen the discussion in Section 1.3. The source code for this high 

performance implementation is included in Section D.5 of Appendix D. 

6.6 Application Programmer's Interface 

6.6.1 Overview 

The system software for the Gauss Machine is divided into two parts: firmware for the 

backplane and the Application Programmer's Interface (API). This chapter describes 

the API which contains routines for linear algebra and communication between the 

host and the Gauss Machine. The API is written in THINK C 5.0 for the Macintosh. 

The Application Programmer's Interface (API) contains roughly X subroutines 

that facilitates programming of the Gauss Machine. The idea behind the API is to 

provide fast prototyping environment for developing and testing new algorithms for 

the Gauss Machine. Therefore, the routines are not necessarily optimized for speed. 

The API can be divided into "high-level" and "low-level" calls. The high-level 

routines often mimic Mat.lab statements, e.g., matrix-matrix, matrix-vector, vector­

vector multiplication is handled by one routine calbl mul t (). The low-level calls 
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implements the primitive operations from which the high-level routines are composed 

of, such as, memory management and communication between the host and the Gauss 

Machine. Furthermore, the algebra routines comes in two versions, one using floating­

point arithmetic and the other using integer arithmetic. 

Typically, the development of an algorithm for the Gauss Machine consists of 

the following steps: 

• Program and test algorithm in Matlab. 

• Port Matlab code into API calls. 

• Test API code with the Gauss Machine. 

• If optimization is of interest, rewrite code using the low-level API. 

A complete listing of the API calls are found in Appendix X. 

6.6.2 High-Level API Routines 

Prototyping and testing signal processing/linear algebra algorithms are easily done 

in interactive packages like Matlab, Mathematica, Maple and Monarch/Siglab. The 

design of the high-level API was done with this in mind. The API routines imitates 

Matlab function calls which makes it easy to port an m-file or a Matlab script to 

a C program running on the Gauss Machine. The Matlab statements are simply 

exchanged to the corresponding API calls and, with some glue code, the port is 

complete. 

The software was written in TIIINK C version 5.0 with the following libraries: 

ANSI, MacTraps. The code was compiled and run on a !VIae Ilx, 4Mb RAM, 4Mb 

virtual memory, System 7.0. 



These are the THINK C settings under Edit, Options ... 

• Language Settings 

ANSI Conformance 

Check pointer types. 

Language Extensions 

THINK C 

Strict Prototype Enforcements 

Infer Prototypes 

• Compiler Settings 

Generate 68020 instructions 

Generate 68881 instructions 

Classes are indirect by default 

Methods are virtual by default 

Optimize monomorphic methods 

\bslash p is unsigned char[] 

• Code Optimization 

- Defer & combine stack adjust 

Suppress redundant loads 

Aut.omat.ic Register Assignment Debugging 
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Use source debugger 

Use second screen 

Always save session 

These are the THINK C settings under Project, Set Project Type ... 

Application 

File type APPL 

Partion (K) 384 

Size Flags 0000 
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The software consists of 5 "library" files (with corresponding header files) and 

one global header file: 

types. h: Global type definitions. 

list. c: Memory management routines. This software was originally written by 

R. F. Starr, 2639 Valley Field Dr., SugarLand, TX 77479 and was published in 

Dr. Dobbs Journal. list. c have been slightly modified. 

ut ils. c: Utili ties. 

conv. c: Floating-point to fixed-point conversion routines. 

matrix. c: Floating-point matrix algebra routines, memory management. 

int..matrix. c: Integer matrix algebra routines, memory management. 
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The routines in intJI\atrix. care identical to the routines in matrix. c except 

for those operations that are not defined for integers, i.e., division. 

In order to compile these files as parts of a code resource, change all calls of 

malloc() to NewPtrO and free() to DisposPrtO. Furthermore, comment out the 

stdio routines, i.e., printf() and friends, in utils.c. It may be also necessary to 

change the ANSI library to the required library for code resources. 

Note: Whenever the comments in the code and this document disagree, rely 

on this document. 

6.6.3 Macros and Constants 

file: intJilatrix. c 

#define COMP Ox4 I* marks compatible dimensions *I 

#define SCAL Ox8 I* marks one operand as a scalar *I 

#define INT(a) ((int)(a)) I* casts a to integer *I 

#define EQDIM(a, b) ( (a->rows == b->rows) && (a->cols == 

b->cols) ) I* checks if a and b has the same dimensions *I 

file: matrix. c 

#define OOPS printf(oops: %d\n, __ LINE_); I* debugging macro *I 

#define COMP Ox4 I* marks compatible dimesions *I 

#define SCAL Ox8 I* marks one operand as a scalar *I 

#define INT(a) ((int)(a)) I* casts a to integer *I 

file: conv. h 



#define max(a, b) (a > b) ? a b I* maximum of a and b *I 

#define min(a, b) (a < b) ? a b I* minimum of a and b *I 

file: int_matrix oh] 

#define deref(type,x) *((type*)(x)) I* not really useful *I 

file: matrix o h 

#define SIZE(a) ((a)->rows * (a)->cols) I* computes number of 

elements in matrix *I 

-#define EQDIM(a, b) ( (a->rows == b->rows) && (a->cols == 

b->cols) ) I* checks if a and b has the same dimensions *I 

#define cmul(a, b, c, d, e, f); a= (c) * (e) - (d) * (f); b = 

(c) * (f) +(d) * (e); I* complex multiply *I 

#define cabs(a, b) sqrt(((a) * (a) + (b) * (b))) I* compute 

complex absolut value *I 

file: types 0 h 

#define INTTYPE long I* integer data type *I 

#define FLOATTYPE double I* floating-point data type *I 

#define NOERR 0 I* OK return code *I 

#define CMPLX Oxl I* marks a complex value *I 

#define REAL Ox2 I* marks a real value *I 

file: utils_h 
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#define PLAIN OxO I* Plain format *I 

#define MATLAB Ox1 I* Print in MATLAB style (with [] and ;) *I 

6.6.4 Function Descriptions. 

matrix *add(matrix *a, matrix *b) 

description: Adds matrices a and b. 

arguments: matrix *a, *b Input matrices. 

returns: matrix * _The sum of a and b, NULL if error. 

usage: sum = add(a, b); I* sum = a + b 

matlab equivalent: 

>> sum = a + b; *I 

file: matrix. c 

matrix *appendcols(matrix *a, matrix *b) 
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description: Returns a matrix with b's columns appended to a ([a, b]). Naturally, a and b 

must have the same number of rows. 

arguments: matrix *a, *b Input matrices. 

returns: matrix * [a, b], NULL if error. 

usage: c = appendcols(a, b); I* c = [a, b] 

matlab equivalent: 



>> c = [a, b] ; *I 

file: matrix. c 

matrix *appendrows(matrix *a, matrix *b) 

description: Returns a matrix with b's rows appended to a ([a; b]). Naturally, a and b 

must have the same number of columns. 

arguments: matrix *a, *b Input matrices. 

returns: matrix * '[a; b], NULL if error. 

usage: c = appendrows(a, b); I* c = [a; b] 

matlab equivalent: 

>> c = [a; b] ; *I 

file: matrix. c 
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matrix *assign(matrix *target, matrix *rows, matrix *cols, matrix* *source) 

description: Puts the matrix source into a sub matrix of target indicated by rows and cols. 

That is, rows and cols defines a sub matrix of target (exactly like 

sub_matrix()) and this sub matrix is overwritten with data from the source 

matrix. This is analogous to the matlab statement target(rows, cols) = 

source. Needless to say, the suh matrix of target and source must be of the 

same dimensions. For example, suppose 

target = [ 1 2 :3 4; 5 6 7 8; 9 l 0 II 12], 
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source = [13 14; 15 16], 

rows = [3 2] and cols = [1 2], the resulting matrix would be 

[ 1 2 3 4; 15 16 7 8; 13 14 11 12 ]. 

If rows or cols is NULL, this means all the rows and all the columns of target. 

That is, target( rows,:) = source would be coded as assign( target, rows, NULL, 

source), and similarly, target(rows,:) =source would be coded as 

assign(target, rows, NULL, source). 

arguments: matrix *target Matrix to be written to. 

matrix *rows Row indexing matrix. 

matrix *cols Column indexing matrix 

matrix *source Matrix whose data will be written to target. 

returns: matrix * Copy of target with parts overwritten by source, NULL if error. 

usage: assign(target, rows, cols, source); II target(rows, cols) = 

source 

assign(target, rows, NULL, source); II target(rows, :) =source 

assign(target, NULL, cols, source); II target(:, cols) =source 

see also: sub...matrix() temp_copy() 

note: Does not handle the case target(:,:) = source. for this case copy source with 

target = tern p_copy( source). 

file: matrix. c 



void clear _error( void) 

description: Clears the error string. This is typically done at start up or after recovering 

from an error. 

arguments: nothing 

returns: nothing 

usage: clear_error(); II Clear error messages 

see also: get_error () , 'error() , print_error () 

file: utils. c 

void close_GM(void) 

description: Frees memory allocated to temporary matrices and cleans up. close_GM() 

should only be called once and be matched with a open_GM() call. To only 

free memory allocated by temporary matrices use kilUempJist(). 

arguments: none 

returns: nothing 

usage: close_GM(); I I Clean up 

see also: open_GM(), kilLtemp_list () 

file: utils.c 
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int cmplx_promote(matrix *a, matrix *b) 

description: Promotes, if necessary, the operands a and b to complex matrices, that is, if 

either a or b is complex then both a and b are converted to complex matrices. 

arguments: matrix *a, *b Matrices to be promoted. 

returns: int NO ERR if successful, -1 if malloc failed 

usage: res = cmplx_promote(a, b); I* Complex promotes a and b, OK if res 

== NOERR. *I 

see also: op_check () 

file: matrix. c 

matrix *conj(matrix *mat) 

description: Returns a matrix equal to the complex conjugate of the input matrix. 

arguments: matrix *mat Input matrix. 

returns: matrix * The complex conjugated input matrix 

usage: conj_A = conj (A); I* conj_A = -A 

matlab equivalent: 

>> conj_A = conj(A); *I 

file: matrix. c 
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matrix *copy _matrix( matrix *source) 

description: Returns a copy of the matrix source. The copy is allocated with new ..matrix(). 

Note that it is the user's responsibility to free this matrix. Use copy_temp() to 

get a temporary matrix (which will be freed by kilLtempJist() or close_GM()). 

arguments: matrix *source Matrix to be copied. 

returns: matrix * Copy of source. NULL if out of memory. 

usage: new = copyJUatrix(old); I I copy the matrix old to the matrix new 

see also: killJUatrix(), new_temp(), copy_tempO, new.1natrixO, 

kilLternp..list 0 

note: It is the user's responsibility to free any matrix that has been allocated with 

copy . .matrix (with kill..matrix). 

file: matrix. c 

matrix *copy_temp(matrix *source) 

description: Returns a copy of the matrix source. The copy is allocated with new_temp() 

and therefore, is a temporary matrix. To free ALL temporary matrices, use 

kilLtempJist() or close_GM(). 

arguments: matrix *source Matrix to be copied. 

returns: matrix * Copy of Hource. NULL if out of memory. 



usage: new = copy_tel!lp(old); II copy the matrix old to the temporary 

matrix new 

see also: kilL.matrixO, copyJnatrix(), new_temp(), newJnatrixO, 

kilLtemp_list () 

file: matrix. c 

void error( char *msg) 
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description: Copies the stt-i'ng msg to the global error string. This routine is used to report 

errors. The error string can be recovered by get_error(). Maximum length of 

msg is 255 characters. 

arguments: char *msg; Error message to be copied to the global error string. 

returns: nothing 

usage: error(Division by zero is a bad idea); I* Division by zero error 

message *I 

see also: get_error(), clear_errorO, print_error() 

file: utils.c 

FLOATTYPE fixed2float(INTTYPE i) 

description: Converts a fixed-point number to noat.ing-point using the word length and 

number of fractional bit." "et by init.conv(). 



arguments: INTTYPE i Fixed-point number to be converted to floating-point. 

returns: FLDATTYPE Floating-point number representing the input argument. 

usage: FLDATTYPE result; 

INTTYPE int_result; 

result= float2fixed(int_result); I* convert int_result to 

floating-point *I 

see also: init_conv(), float2fixed(), mfloat2fixed(), mfixed2float() 

file: conv. c 

INTTYPE f!oat2fixed(FLOATTYPE f) 

description: Converts a floating-point number to fixed-point using the word length and 

number of fractional bits set by iniLconv(). 

arguments: FLDATTYPE f Floating-point number to be converted to fixed-point. 
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returns: INTTYPE Integer whose bits are the fixed-point representation of the input 

argument. 

usage: INTTYPE fixed_pi; 

fixed_pi = float2fixed(3.141592654); II convert pi to fixed-point 

see also: init_conv(), fixed2float0, mfloat2fixed(), mfixed2float() 

file: conv. c 
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void geLerror( char *error _string) 

description: Copies the global error string to error _string. If an error has occurred the 

error string will contain an error message. error..string must be allocated to at 

least 255 characters by the caller. 

arguments: char *error_string Will contain a copy of the error message (if any). 

returns: nothing 

usage: char err_str[255]; I I make sure that err_str is at least 255 

chars long 

get_error(err_str); II get error message 

see also: error(), clear_error(), print_error() 

file: utils.c 

void GM2LV(matrix *a, TDlHdl re, TDlHdl im) 

description: Copies data from GM matrix to Labview matrix. Note that re and im must 

be already allocated by the caller and of correct dimensions. If a is a real 

matrix then zeros will be put in im. 

arguments: matrix *a GM matrix whose data is to be copied to re and im. 

TD1Hdl re, im Handles to Labview matrix data structure. 

returns: nothing 



usage: LV2GM(A, A_real, A_imag); II Copies data from A into A_real and 

A_imag. 

see also: LV2GM() 

file: ut ils. c 

matrix *herm(matrix *mat) 

description: Returns the conjugate transpose of the input matrix , that is, takes the 

hermitian of mat. 

arguments: matrix *mat Input matrix. 

returns: matrix * The conjugate transposed input matrix, NULL if error. 

usage: tran...A = herm(A); I* tran...A = A' 

matlab equivalent: 

>> A = A'; Y. Note ' not ' . ' that is, conjugate transpose *I 

see also: transp () 

file: matrix. c 

matrix *imag(matrix *mat) 

description: Returns a. matrix containing the imaginary part of mat. 

Mguments: matrix *mat Input matrix. 
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returns: matrix * Imaginary part of mat. 

usage: im_part = imag(cmplx..matrix); I* im_part = Im[cmplx..matrix] 

matlab equivalent: 

>> im_part = imag(cmplx..matrix); *I 

file: matrix. c 

matrix *index_cols(matrix *mat, matrix *ind) 
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description: Returns the co.Jumns of mat that are pointed out by incl. The elements of ind 

are truncated to integers (with mf!oor()) and are used to pick out columns. 

That is, suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind = [3.14 1.99], then the 

result would be a matrix of the form [3 2; 6 5; 9 8]. This is analogous to the 

matlab statement, mat(:, ind). 

arguments: matrix *mat Matrix to be indexed. 

matrix *ind Column indexing matrix. 

returns: matrix * The indexed input matrix, NULL if error. 

usage: B = index_cols (mat, ind); I* B = mat (: , ind) 

matlab equivalent: 

» B = mat (: , ind) ; *I 

see also: index_rows (), index_rows_cols (), sub..matrix () 

note: For grca.t.<·st. convcni<•nce, ''"" ,;uluna.trix() for all indexing purposes. 
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file: matrix. c 

matrix *index_rows(matrix *mat, matrix *ind) 

description: Returns the rows of mat that are pointed out by ind. The elements of ind are 

truncated to integers (with mfloor()) and are used to pick out rows. That is, 

suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind = [3.14 1.99], then the result 

would be a matrix of the form [7 8 9; 4 5 6]. This is analogous to the mat!ab 

statement, mat(ind, : ). 

arguments: matrix *mat Matrix to be indexed. 

matrix *ind Row indexing matrix. 

returns: matrix * The indexed input matrix, NULL if error. 

usage: B = index_rows (mat, ind); I* B = mat (ind, :) 

matlab equivalent: 

>> B = mat(ind, :) *I 

see also: index_cols (), index_rows_cols (), sub.Jnatrix () 

note: For greatest convenience, use sub_matrix() for all indexing purposes. 

file: rna trix. c 

matrix *index_rows_cols(matrix *mat, matrix *ind_a, matrix *ind_b) 
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description: Returns the rows and columns of mat that are pointed out by ind_a and ind_b. 

The elements of ind_a and ind_b are truncated to integers (with mfloor()) and 

are used to pick out rows and columns, respectively. That is, suppose mat = 

[1 2 3; 4 56; 7 8 9], and ind_a = [3.14 1.99] and ind_b = [2.1], then the result 

would be a matrix of the form [8; 2] (that is, elements (3,2) and (1,2)). This is 

analogous to the matlab statement, mat(ind..a, ind_b ). 

arguments: matrix *mat Matrix to be indexed. 

matrix *ind_a Row indexing matrix. 

matrix *ind_b Column indexing matrix. 

returns: matrix * The indexed input matrix, NULL if error. 

usage: B = index..rows_cols (mat, ind_a, ind_b); I* B = mat (ind_a, ind_b) 

matlab equivalent: 

» B = mat(ind_a, ind_b); *I 

see also: index..rows (), index_cols (), sub...matrix() 

note: For greatest convenience, use sub_matrix() for all indexing purposes. 

file: matrix. c 

void iniLGM(void) 

description: Initializes everything. Clears the global error string (see error()), sets output 

print format to Mi\TLAB and 8 digits (s<'e iniLprint()) and initia.lizcs 



memory management (see iniUempJist()). iniLGM() should only be called 

once and be matched with a close_GM() call. 

arguments: none 

returns: nothing 

usage: init_GM(); I I Initialize everything 

see also: close_GM () 

file: utils.c 

void init_conv(int wlen, int fbits) 
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description: Initializes the conversion routines and sets the word length and number of 

fractional bits for the fixed-point representation. The fixed-point numbers are 

assumed to be signed. Thus, for a word length of 8 and 3 fractional bits, one 

bit would be the sign bit and 4 bits will be left for the integer part. This 

means that number between 1111.111 and -1111.111 (±15.875) can be 

represented. Maximal word length is 32. 

arguments: int wlen 

int fbits 

returns: nothing 

Number of bits per word 

Number of fractional bits 

usage: init_conv(21, 6); I* Use 21 bit signed words; 6 fractional bits, 

14 integer bits *f 
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see also: float2fixed(), fixed2float (), mfloat2fixed(), mfixed2float () 

file: conv. c 

void init_print(int sdig, int format) 

description: Set number of significant digits and format used by printm() and inLprintm(). 

The format can either be PLAIN or MATLAB. MATLAB gives a text output 

that is easily imported into matlab. PLAIN on the other hand is a bit easier 

read. 

arguments: int sdig Number of significant digits. 

int format Output format style, either MATLAB or PLAIN. 

returns: nothing 

usage: init_print(6, MATLAB); I I 6 significant digits and MATLAB output 

format 

see also: printmO, int_printm(), init_GM() 

file: utils. c 

int init_temp_!ist(void) 

description: Initialize the list for allocation of temporary matrices 

arguments: none 

returns: int NOE!Ul if all right, -l if out of rnernory 



• 

usage: err= init_temp_listO; I* Initialize temp matrices, inspect err 

for errors. *I 

see also: ini t_GM 0 

note: iniUempJist() is normally called from iniLGM(); 

file: matrix. c 

int_matrix *inLadd(intJTiatrix *a, int_matrix *b) 

description: Adds matrices a and b. 

arguments: int..matrix *a, *b Input matrices. 

returns: int..matrix * The sum of a and b, NULL if error. 

usage: sum = int_add(a, b); I* sum = a + b 

matlab equivalent: 

>> sum = a + b; *I 

file: int..matrix. c 

int_matrix *inLappendcols(intJTiatrix *a, inLmatrix *b) 
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description: Returns a matrix with b's columns appended to a ([a, b]). Naturally, a and b 

must have the same number of rows. 

arguments: int..matrix *a, *b Input matrices. 



returns: int_rnatrix * [a, b], NULL if error. 

usage: c = int_appendcols(a, b); I* c = [a, b] 

matlab equivalent: 

>> c = [a, b] ; *I 

file: int_rnatrix. c 

int..matrix *inLappendrows(int_matrix *a, inLmatrix *b) 

description: Returns a matyix with b's rows appended to a ([a; b]). Naturally, a and b 

must have the same number of columns. 

arguments: int_rnatrix *a, *b Input matrices. 

returns: int_rnatrix * [a; b], NULL if error. 

usage: c = int_appendrows (a, b); I* c = [a; b] 

matlab equivalent: 

>> c = [a; b]; *I 

file: int_rnatrix. c 
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inLmatrix *inLassign(inLmatrix *target, inLmatrix *rows, inLmatrix *cols, matrix *source) 

description: Puts the matrix source into a sub matrix of target indicated by rows and cols. 

That is, rows and cols defines a sub matrix of target (exactly like 

int..sub_matrix()) and this sub ma.t.rix is overwritten with data from the source 



matrix. This is analogous to the mat lab statement target( rows, cols) = 

source. Needless to say, the sub matrix of target and source must be of the 

same dimensions. For example, suppose 

target = [1 2 3 4; 5 6 7 8; 9 10 11 12], 

source = [13 14; 15 16], 

rows = [3 2] and cols = [1 2], the resulting matrix would be 

[ 1 2 3 4; 15 16 7 8; 13 14 11 12 ]. 
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If rows or cols -is NULL, this means all the rows and all the columns of target. 

That is, target( rows,:) = source would be coded as assign( target, rows, NULL, 

source), and similarly, target(rows,:) =source would be coded as 

int..assign(target, rows, NULL, source). 

arguments: int_matrix *target Matrix to be written to. 

int_matrix *rows Row indexing matrix. 

int_matrix *cols Column indexing matrix 

int_matrix *source Matrix whose data will be written to target. 

returns: int_matrix * Copy of target with parts overwritten by source, NULL if 

error. 

usage: int_assign(target, rows, cols, source); II target(rows, cols) = 

source 

int_assign(target, rows, NULL, source); II target(rows, :) = 

source 



int_assign(target, NULL, eels, source); II target(:, eels) = 

source 

see also: int_sub...matrix(), int_temp_copy() 
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note: Does not handle the case target(:,:) =source. For this case copy source with 

target = inLtemp_copy(source). 

file: int...matrix. c 

int inL~mplx_promote(intJTiatrix *a, inLmatrix *b) 

description: Promotes, if necessary, the operands a and b to complex matrices, that is, if 

either a or b is complex then both a and b are converted to complex matrices. 

arguments: int...matrix *a, *b Matrices to be promoted. 

returns: int N 0 ERR if successful, -1 if malloc failed 

usage: res = int_cmplx_promote(a, b); I* Complex promotes a and b, OK if 

res == NOERR. *I 

see also: int_op_check () 

file: int...matrix. c 

inLmatrix *inLconj (int_matrix *mat) 

description: Returns a matrix equal to the complex conjugate of the input matrix. 

arguments: int...matrix *mat Input. matrix. 
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returns: intJilatrix * The complex conjugated input matrix 

usage: conj...A = int_conj (A); I* conj...A = -A 

matlab equivalent: 

>> conj...A = conj(A); *I 

file: intJilatrix. c 

int_matrix *int_copy Jnatrix(intJnatrix *source) 

description: Returns a copy of the matrix source. The copy is allocated with 

int..new_matrix(). Note that it is the user's responsibility to free this matrix. 

Use inLcopy_temp() to get a temporary matrix (which will be freed by 

kilLtempJist() or close_GM()). 

arguments: intJilatrix *source Matrix to be copied. 

returns: intJilatrix * Copy of source. NULL if out of memory. 

usage: new = int_copyJilatrix(old); II copy the matrix old to the matrix 

new 

see also: intJdllJilatrix(), int..new_temp(), int_copy_temp(), 

int..newJilatrix (), 

kilLtemp_list () 

note: It is the user's responsibility to free any matrix that has been allocated with 

inLcopy_matrix (with int._kilLrnatrix). 
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file: intJllatrix. c 

int_matrix *inLcopy _temp(intJTiatrix *source) 

description: Returns a copy of the matrix source. The copy is allocated with 

int_new_temp() and therefore, is a temporary matrix. To free ALL temporary 

matrices, use kilLtempJist() or close_GM(). 

arguments: intJllatrix *source Matrix to be copied. 

returns: intJllatrix * Copy of source. NULL if out of memory. 

usage: new = int_copy_temp(old); I I copy the matrix old to the temporary 

matrix new 

see also: int...kilLmatrixO, int_copy..rnatrix(), int..new_temp(), 

int..new..rnatrix(), 

kilLtemp_list () 

file: intJllatrix. c 

inLmatrix *inLherm(intJTiatrix *mat) 

description: Returns the conjugate transpose of the input matrix, that is, takes the 

hermitian of mat. 

arguments: intJllatrix *mat Input matrix. 

returns: int..rnatrix * The conjugate transposed input matrix, NULL if error. 
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usage: tran...A = int...herm(A); I* tran...A = A' 

matlab equivalent: 

>> A = A'; % Note ' not ' . ' that is, conjugate transpose *I 

see also: int_transp () 

file: intJnatrix. c 

int_matrix *int_imag(int_matrix *mat) 

description: Returns a matrix containing the imaginary part of mat. 

arguments: intJnatrix *mat Input matrix. 

returns: intJnatrix * Imaginary part of mat. 

usage: im_part = int_imag(cmplxJnatrix); I* im_part = Im[cmplxJnatrix] 

matlab equivalent: 

» im_part = imag(cmplxJnatrix); *I 

file: intJnatrix. c 

inLmatrix *inLindex_cols(inLmatrix *mat, int_matrix *ind) 

description: Returns the columns of mat that are pointed out by ind. The elements of ind 

are used to pick out columns. That is, suppose mat = [ 1 2 3; 4 5 6; 7 8 9], and 

ind = [:! l], then the n•stdt would be a matrix of the form [:! 2; 6 5; 9 8]. This 

is analogous to the mat.la.b st.a.t.enH~nt., mat(:, ind). 



arguments: int_matrix *mat Matrix to be indexed. 

int_matrix *ind Column indexing matrix. 

returns: int_matrix * The indexed input matrix, NULL if error. 

usage: B = int_index_cols (mat, ind); I* B = mat (: , ind) 

matlab equivalent: 

>> B =mat(:, ind); *I 

see also: int_index..rows (), int_index..rows_cols (), int_sub_matrix () 

note: For greatest convenience, use int..sub_matrix() for all indexing purposes. 

file: int_matrix. c 

int_matrix *int_index_rows(int_matrix *mat, int_matrix *ind) 
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description: Returns the rows of mat that are pointed out by incl. The elements of ind are 

used to pick out rows. That is, suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind = 

[3 1], then the result would be a matrix of the form [7 8 9; 4 5 6]. This is 

analogous to the matlab statement, mat(ind, : ). 

arguments: int_matrix *mat Matrix to be indexed. 

int_matrix *ind Row indexing matrix. 

returns: int_matrix * Tlw indexed input. matrix, NULL if error. 



usage: B = int .... index .... rows(mat, ind); I* B = mat(ind, :) 

matlab equivalent: 

>> B = mat(ind, :) *I 

see also: int .... index .... cols(), int .... index.rows .... cols(), int .... sub...matrix() 

note: For greatest convenience, use int..sub .... matrix() for all indexing purposes. 

file: int...matrix. c 
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int_index_rows .... cols(int .... matrix *mat, int....matrix *ind .... a, int .... matrix* ind .... b) 

description: Returns the rows and columns of mat that are pointed out by ind .... a and ind .... b. 

The elements of ind .... a and ind .... b are used to pick out rows and columns, 

respectively. That is, suppose mat = [1 2 3; 4 5 6; 7 8 9], and ind .... a = [3 1] 

and ind .... b = [2], then the result would be a matrix of the form [8; 2] (that is, 

elements (3,2) and (1,2)). This is analogous to the matlab statement, 

mat(ind .... a, ind .... b ). 

arguments: int...matrix *mat Matrix to be indexed. 

int...matrh *ind .... a Row indexing matrix. 

int...matrix *ind .... b Column indexing matrix. 

returns: int...matrix * The indexed input matrix, NULL if error. 

usage: B = int .... index .... rows .... cols(mat, ind .... a, ind .... b); I* B = mat(ind .... a, 

ind .... b) 
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matlab equivalent: 

» B = mat (ind_a, ind_b); *I 

see also: int_index_rowsO, int_index_cols(), int_sub...rnatrixO 

note: For greatest convenience, use int..sub_matrix() for all indexing purposes. 

file: int...rnatrix. c 

void inLkillJ11atrix(intJ11atrix *mat) 

description: Frees memory used by mat. Note that mat should have been allocated with 

inLnew_matrix() or inLcopyJnatrix(). If mat is a temporary matrix, that is, 

allocated explicitly or implicitly with inLnew_temp() or inLcopy_temp(), then 

kilLtempJist() should be used. 

arguments: int...rnatrix *mat Matrix to be freed, must have been allocated by 

intJlew _matrix() or int_copy Jnatrix() 

returns: nothing 

usage: intJkill...rnatrix(A); //Free memory allocated for A 

see also: int_copy_matrix(), intJlew_temp(), int_copy_temp(), 

intJlew...rnatrix(), 

kilLtemp_list 0 

note: The matrix mat. must have been allocated by inLncw_matrix() or 

in Lcopy _matrix() 



file: int..matrix. c 

int int_maxJndex(int.matrix *mat) 

description: Return index to maximal element of mat. 

arguments: int..matrix *mat Input matrix. 

returns: int Index to the maximal element of mat. 

usage: max_i = int..max_index(mat); I* max(mat) = mat [max_i] 

matlab equivalent: 

>> max_i = find(mat -- max(mat(:))); *I 

file: int..matrix. c 

int int_minJndex(int.matrix *mat) 

description: Return index to minimal element of mat. 

arguments: int..matrix *mat Input matrix. 

returns: int Index to the minimal element of mat. 

usage: min_i = int..min_index(mat); I* min(mat) = mat [min_i] 

matlab equivalent: 

>> min_i = find(mat -- min(mat(:))); *I 

file: int..matrix. c 
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\ 



int_matrix *inLminus(inLmatrix *mat) 

description: Returns a matrix equal to the negative of input matrix. 

arguments: int..matrix *mat Input matrix. 

returns: int..matrix * The negated input matrix. 

usage: minus ...A = int..minus (A) ; I* minus ...A = -A 

matlab equivalent: 

>> minus...A = -A; *I 

file: int..matrix. c 

inLmatrix *inLmul(int_matrix *a, int_matrix *b) 

description: Multiplication of matrices a and b. 

arguments: int..matrix *a, *b Input matrices. 

returns: int..matrix * The product of a and b, NULL if error. 

usage: prod = int_pmul(a, b); I* pprod = a * b 

matlab equivalent: 

>> prod = a * b; *I 

file: int..matrix. c 
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int int_muLcheck(inLmatrix *a, int_matrix *b) 

description: Check field type and dimensions. First a and b are complex promoted by 

inLcmplx_promote(). Returns COMP if a and b have the same dimensions. 

Returns COMP - SCAL if either a or b is a scalar. In addition, if a and b 

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR 

ed to the returned value. Thus, if type= int_op_check(a,b), then (type & 

CMPLX) will be true if either a orb is complex, (type & REAL) will be true 

if both a and bare real, (type & COMP) will be true if dimensions match or if 

a orb is a scalar, (type & SCAL) will be true if a or b is a scalar. 

arguments: int..matrix *a, *b matrices to be checked 

returns: int The hits are set according to the description above. 

usage: type = int...muLcheck(a, b); I* checks dimensions of a, b. Bits 

in type will be set in type according to the description above *I 

see also: int_cmplx_promote(), int_op_check() 

note: intJnuLcheck() is used by intJnul(). A scalar is compatible with any matrix. 

file: int..matrix. c 

int_matrix *inLnew_matrix(int rows, int cols, int type) 

description: Allocates memory for a matrix with dimension rows and cols and of type type 

(CMPLX or nEAL). Note that it is the user's responsibility to free this 

matrix. Use int.Jlew_l.emp() to allocate memory for a temporary matrix 

(which will be freed by kilLt.empJist() or close_GM()). 
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arguments: int rows, eels Dimensions of matrix to be allocated 

int type 

real matrix 

Type of matrix, CMPLX for a complex matrix and REAL for a 

returns: int_matrix * Matrix of the requested size and type. NULL if out of 

memory. 

usage: mat = int..new_matrix (3, 5, CMPLX); I* Allocate memory for a 3x5 

complex matrix *I 

see also: int_copy.lllatrix(), int..new_tempO, int_copy_temp(), 

int....kill.lllatrix(), 

kilLtemp_list () 

note: It is the user's responsibility to free any matrix that has been allocated with 

int..new _matrix() (with int..kill..matrix()). 

file: int...matrix. c 

int...rnatrix *int_new_temp(int rows, int cols, int type) 

description: Allocates memory for a temporary matrix with dimension rows and cols and 

of type. Note that it is the user's responsibility to free this matrix. To free 

ALL temporary matrices, use kilLtempJist() or close_GM(). 

arguments: int rows, eels Dimensions of matrix to be allocated. 

int type 

real matrix. 

Type of matrix, CMPLX for a complex matrix and REAL for a 



returns: int.Jllatrix * 

memory. 

Matrix of the requested size and type. NULL if out of 

usage: mat = int_new_temp(3, 5, CMPLX); II Allocate memory for a 

temporary 3x5 complex matrix 

see also: int..kill...matrix() , int_copy ...matrix(), int_copy_temp (), 

int..new...matrix(), 

kilLtemp_list () 

file: int.Jllatrix. c 

int inLop_check(int_matrix *a, inLmatrix *b) 
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description: Check field type and dimensions. First a and b are complex promoted by 

int_cmplx_promote(). Returns COMP if a and b have the same dimensions. 

Returns COMP - SCAL if either a or b is a scalar. In addition, if a and b 

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR 

ed to the returned value. Thus, if type= int..op_check(a,b), then (type & 

CMPLX) will be true if either a orb is complex, (type & REAL) will be true 

if both a and bare real, (type & COMP) will be true if dimensions match, 

(type & SCAL) will be true if either a orb is a scalar. 

arguments: int.Jllatrix *a, *b Matrices to be checked 

returns: int The bits are set according to the description above. 

usage: type = int_op_check(a, b); I* checks dimensions of a, b. Bits in 

type will be set in type according to the description above *I 



see also: int_crnplx_prornoteO, intJlluLcheck() 

note: int_op_check() is used by int_add(), int_pmul(), int_pdiv(). A scalar is 

compatible with any matrix. 

file: intJllatrix. c 

intJUatrix *int_pmul(intJUatrix *a, int_matrix *b) 

description: Point wise multiplication of matrices a and b. 

arguments: intJllatrix *a, *b Input matrices. 

returns: intJllatrix * The point wise product of a and b, NULL if error. 

usage: pprod = int_prnul(a, b); I* pprod = a . * b 

rnatlab equivalent: 

>> pprod = a ·* b; *I 

file: intJllatrix. c 

void int_printm(intJUatrix *mat) 

description: Prints an integer matrix to stdout using the number of significant digits and 

output style set by iniLprint(). 

arguments: intJllatrix *mat Matrix to be printed 

returns: void 
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usage: printrn(Rxx); II prints Rxx to stdout 

see also: init_print() printrn() 

file: utils. c 

int_matrix *int_range(INTTYPE from, INTTYPE step, INTTYPE to) 

description: Creates a vector like matlab's from:step:to. If step is 0, then the step size is 

set to 1. For example, int_range(l, 2, 7) results in [1 3 5 7], int_range(3, 0, 5) 

results in [3 4 ;>]. 

arguments: INTTYPE from Start value. 

INTTYPE step Step size. 

INTTYPE to Stop value. 

returns: int..rnatrix * Vector with elements starting at from and stopping at to, 

spaced by step. NULL if error. 

usage: int_range(from, step, to); II from:step:to 

int_range(from, 0, to); II frorn:to 

file: int..rnatrix. c 

inLmatrix *inLreal(int_matrix *mat) 

description: Returns a matrix containing the real part o[ mat. 

arguments: int..rnatrix *mat Input matrix. 



returns: int...matrix * Real part of mat. 

usage: reaLpart = int_real (cmplx...matrix); I• reaLpart = 

Re [cmplx...matrix] 

matlab equivalent: 

» reaLpart = real.(cmplx...matrix); •I 

file: int...matrix. c 

int_matrix *i}lt_scl2mat(INTTYPE re, INTTYPE im, int type); 
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description: Creates a lxl matrix from the scalar (re + j*im), if type is CMPLX. If type is 

REAL the imaginary part is ignored. 

arguments: INTTYPE re Real part. 

INTTYPE im Imaginary part 

returns: int...matrix * lxl matrix with the element (re + j*im). NULL if error. 

usage: scalar...mat = int_scal2mat(3, 2, CMPLX); II scalar...mat(1,1) = 3 + 

j*2 

scalar...mat = int_scal2mat(3, 2, REAL); II scalar...mat(1,1) = 3 

inLsub_matrix(int_matrix *mat, inLmatrix *rows, inLmatrix* inLmatrix *cols); 

description: Returns the rows a.ncl columns of ma.t that are pointed out by (the matrices) 

rows and cols. The clements of rows and cols arc used to pick out rows and 

columns, respectively. That is, suppose mal= [I 2 :1; 4 5 6; 7 8 9], and rows = 
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[3 1] and cols = [2], then the result would be a matrix of the form [8; 2] (that 

is, elements (3,2) and (1,2)). This is analogous to the matlab statement, 

mat( rows, cols). To just index rows, like matlab's mat( rows, :), set cols to 

NULL. Similarly, to just index columns, like matlab's mat(:, cols), set rows to 

NULL. By using this scheme all indexing can be done with int..sub_matrix(). 

arguments: int...matrix *mat Matrix to be indexed. 

int...matrix *rows Row indexing matrix. 

int...matrix *cols Column indexing matrix. 

returns: int...matrix * The indexed input matrix, NULL if error. 

usage: B = int_sub_rnatrix(mat, rows, cols); II B = mat(rows, cols) 

B = int_sub_rnatrix(mat, rows 1 NULL); II B = mat(rows, :) 

B = int_sub_rnatrix(mat, NULL, cols); I* B = mat (: , cols) 

matlab equivalent: 

>> B = mat(rows, cols); *I 

see also: int_index..rows () , int_index_cols () , int_index..rows_col s () 

note: For greatest convenience, use int..sub_matrix() for all indexing purposes. 

file: int...matrix. c 

int_matrix *int_transp(inLmatrix *mat) 
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description: Returns the transpose of the input matrix. Note: does not conjugate 

elements. Use intJ1erm() for conjugate transpose (hermitian). 

arguments: int_rnatrix *mat Input matrix. 

returns: int_rnatrix * The transposed input matrix, NULL if error. 

usage: tran_A = int_transp(A); I* tran_A = A.' 

matlab equivalent: 

>>A= A.'; Y. Note 'not ' that is, does not conjugate *I 

see also: int...herm () 

file: int_rnatrix. c 

void ki!Lmatrix(matrix *mat) 

description: Frees memory used by mat. Note that mat should have been allocated with 

new_matrix() or copyJnatrix(). If mat is a temporary matrix, that is, 

allocated explicitly or implicitly with new_temp() or copy_temp(), then 

kilLtempJist() should be used. 

arguments: matrix *mat Matrix to be freed, must have been allocated by 

new_matrix() or copy . .matrix() 

returns: nothing 

usage: kill_rnatrix(A); //Free memory allocated for A 
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see also: copy _matrix(), new_temp(), copy_temp(), new_matrix(), 

kilLtemp_list () 

note: The matrix mat must have been allocated by new ..matrix() or copy ..matrix() 

file: matrix. c 

void ki!LtempJist(void) 

description: Frees memory allocated by ALL temporary matrices. The temporary matrices 

are allocated, explicitly or implicitly, with new_temp() or copy_temp. 

arguments: none 

returns: nothing 

usage: kilLtemp_list (); I I Free memory allocated by all temporary 

matrices 

see also: kill_matrix(), copy _matrix(), new_temp(), new_matrixO, 

copy_temp(), close_GM() 

file: matrix. c 

matrix *LV2GM(TD1Hdl re, TDIHdl im) 

description: Copies Lab view matrices to Gauss Machine ( GM) matrices. No explicit 

memory allocation is necessary. The memory management is handled 

internally. 
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arguments: TD1Hdl re, im Handles to Labview matrix data structures. 

returns: matrix * 

and im. 

Gauss machine matrix with data from the input arguments re 

usage: A = LV2GM(A..real, A_imag); I* Create a GM matrix with real part 

data from A_real and imaginary data from A_imag. *I 

see also: GM2L V () 

file: utils.c 

int maxJndex(matrix *mat) 

description: Return index to maximal element of mat. 

arguments: matrix *mat Input matrix. 

returns: int Index to the maximal element· of mat. 

usage: max_i = max_index(mat); I* max(mat) = mat [max_i] 

matlab equivalent: 

» max_i = find(mat -- max(mat(:))); *I 

file: matrix. c 

matrix *mfixed2ftoat(int_matrix *mat) 

description: Converts a fixed-point nmtrix to floating-point using the word length and 

number of [ractiona.l bits s<et by iniLconv(). 
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arguments: int.Jllatrix *mat Fixed-point matrix to be converted to floating-point. 

returns: matrix * Floating-point matrix corresponding to the fixed-point matrix. 

usage: int.Jllatrix *int...Rxx; 

matrix *Rxx; 

Rxx = mfixed2float(int...Rxx); //convert int...Rxx to floating-point 

see also: init_conv(), fixed2float0, mfloat2fixed(), fixed2float0 

file: conv. c 

inLmatrix *mfloat2fixed(matrix *mat) 

description: Converts a floating-point matrix to fixed-point using the word length and 

number of fractional bits set by iniLconv(). 

arguments: matrix *mat Floating-point matrix to be converted to fixed-point. 

returns: int.Jllatrix * Integer matrix containing the fixed-point representation of 

the input floating-point matrix. 

usage: int.Jllatrix *int...Rxx; 

matrix *Rxx; 

Rxx = rnfixed2float(int...Rxx); //convert int...Rxx to floating-point 

see also: init_conv(), fixed2float0, mfloat2fixed(), fixed2float0 

file: conv. c 
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matrix *mfioor(matrix *mat) 

description: Returns a matrix with truncated elements of mat, that is, performs the floor 

function (rounding to closest smallest integer) on mat. 

arguments: matrix *mat Input matrix. 

returns: matrix * The "floored" input matrix, NULL if error. 

usage: int..A = mfloor(A); I* int..A = floor(A) 

matlab equivalent: 

>> int..A = floor(A); *I 

note: The output is still a floating point matrix, even though the elements are 

truncated to integers. 

file: matrix. c 

int minJndex(matrix *mat) 

description: Return index to minimal element of mat. 

arguments: matrix *mat Input matrix. 

returns: int Index to the minimal element of mat. 

usage: min_i = min_index(mat); I* min(mat) = mat [min_i] 

matlab equivalent: 

>> min_i = find(mat -- min(mat(:))); *I 



file: matrix. c 

matrix *minus(matrix *mat) 

description: Returns a matrix equal to the negative of input matrix. 

arguments: matrix *mat Input matrix. 

returns: matrix * The negated input matrix. 

usage: minus..A = minus (A) ; I* minus ..A = -A 

matlab equivalent: 

>> minus..A = -A; *I 

file: matrix. c 

matrix *mul(matrix *a, matrix *b) 

description: Multiplication of matrices a and b. 

arguments: matrix *a, *b Input matrices. 

returns: matrix * The product of a and b, NULL if error. 

usage: prod = pmul (a, b); I* pprod = a * b 

matlab equivalent: 

>> prod = a * b; *I 

file: matrix. c 
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int muLcheck(matrix *a, matrix *b) 

description: Check field type and dimensions. First a and b are complex promoted by 

cmplx_promote(). Returns COMP if a and b have the same dimensions. 

Returns COMP - SCAL if either a or b is a scalar. In addition, if a and b 

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR 

ed to the returned val~e. Thus, if type= op_check(a,b), then (type & 

CMPLX) will be true if either a orb is complex, (type & REAL) will be true 

if both a and bare real, (type & COMP) will be true if dimensions match or if 

a orb is a scalar, (type & SCAL) will be true if a or b is a scalar. 

arguments: matrix *a, *b matrices to be checked 

returns: int The bits are set according to the description above. 

usage: type = muLcheck(a, b); I* checks dimensions of a, b. Bits in 

type will be set in type according to the description above *I 

see also: cmplx_promote(), op_check() 

note: muLcheck() is used by mul(). A scalar is compatible with any matrix. 

file: matrix. c 

matrix *new_matrix(int rows, int cols, int type) 

description: Allocates memory for a. matrix with dimension rows and cols and of type 

(CMPLX or REAL). Note that it is the user's responsibility to free this 

matrix. Usc new_t<-mp() to allocate memory for a temporary matrix (which 

will be fr<'<'d by kiiU<'IllpJist() or dosP_C:M()). 
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arguments: int rows, eels Dimensions of matrix to be allocated 

int type 

real matrix 

Type of matrix, CMPLX for a complex matrix and REAL for a 

returns: matrix * Matrix of the requested size and type. NULL if out of memory. 

usage: mat = new..lllatrix(3, 5, CMPLX); I* Allocate memory for a 3x5 

complex matrix *I 

see also: copy..lllatrix(), new_temp(), copy_temp(), kill..lllatrix(), 

kilLtemp_list () 

note: It is the user's responsibility to free any matrix that has been allocated with 

new_matrix() (with kii!Jnatrix()). 

file: matrix. c 

matrix *new_temp(int rows, int cols, int type) 

description: Allocates memory for a temporary matrix with dimension rows and cols and 

of type. Note that it is the user's responsibility to free thjs matrix. To free 

ALL temporary matrices, use kiiLtempJist() or close_GM(). 

arguments: int rows, eels Dimensions of matrix to be allocated. 

int type 

real ma.trix. 

returns: matrix * 

Type of ma.trix, CMPLX for a complex ma.trix and REAL for a 

Ma.t.rix of t.he requested si~e and t.yp<'. NULL if out of memory. 
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usage: mat = new_temp (3, 5, CMPLX); II Allocate memory for a temporary 

3x5 complex matrix 

see also: kilLmatrixO, copy ..matrix(), copy_temp(), new..matrix(), 

kilLtemp~ist 0 

file: matrix. c 

int op_check(matrix *a, matrix *b) 

description: Check field type and dimensions. First a and b are complex promoted by 

cmplx_promote(). Returns COMP if a and b have the same dimensions. 

Returns COMP- SCAL if either a orb is a scalar. In addition, if a and b 

are complex, CMPLX is OR ed to the returned value, otherwise REAL is OR 

ed to the returned value. Thus, if type= op_check(a,b), then (type & 

CMPLX) will be true if either a orb is complex, (type & REAL) will be true 

if both a and bare real, (type & COMP) will be true if dimensions match, 

(type & SCAL) will be true if either a orb is a scalar. 

arguments: matrix *a, *b Matrices to be checked 

returns: int The bits are set according to the description above. 

usage: type = op_check(a, b); I* checks dimensions of a, b. Bits in 

type will be set in type according to the description above *I 

see also: cmplx_promote(), muLcheck() 
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note: op_check() is used by add(), pmul(), pdiv(). A scalar is compatible with any 

matrix. 

file: matrix. c 

matrix *pdiv(matrix *a, matrix *b) 

description: Point wise division of !Tiatrices a and b. 

arguments: matrix *a, *b Input matrices. 

returns: matrix * The point wise division of a and b, NULL if error. 

usage: pprod = pdi v (a, b) ; I* pprod = a . I b 

matlab equivalent: 

>> pprod = a .1 b; *I 

file: matrix. c 

matrix *pmul(matrix *a, matrix *b) 

description: Point wise multiplication of matrices a and b. 

arguments: matrix *a, *b Input matrices. 

returns: matrix * The point wise product of a and b, NULL if error. 

usage: pprod = pmul(a, b); I* pprod = a . * b 

matlab equivalent: 

>> pprod = a ·* b; *I 



file: matrix. c 

void prinLerror(void) 

description: Prints the global error string to stderr. 

arguments: none 

returns: nothing 

usage: print_error(); II Print error string to stderr. 

see also: get_error(), clear_error(), error() 

file: utils. c 

void printm (matrix *mat) 

description: Prints a matrix to stdout using the number of significant digits and output 

style set by iniLprint(). 

arguments: matrix *mat Matrix to be printed 

returns: void 

usage: printm(Rxx); I I prints Rxx to stdout 

see also: init_print() int_printm() 

file: utils.c 

112 
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matrix *range(FLOATTYPE from, FLOATTYPE step, FLOATTYPE to) 

description: Creates a vector like matlab's from:step:to. If step is 0, then the step size is 

set to 1. For example, range(l, 2, 7) results in [1 3 5 7], range(3, 0, 5) results 

in [3 4 5]. 

arguments: FLOATTYPE from Start value. 

FLOATTYPE step Step size. 

FLOATTYPE to Stop value. 

returns: matrix * Vector with elements starting at from and stopping at to, 

spaced by step. NULL if error. 

usage: range(from, step, to);// from:step:to 

range(from, 0, to); // from:to 

file: matrix. c 

matrix *real(matrix *mat) 

description: Returns a matrix containing the real part of mat. 

arguments: matrix *mat Input matrix. 

returns: matrix * Real part of mat. 

usage: reaLpart = real (cmplx..rnatrix); I* reaLpart = Re [cmplx..rnatrix] 

matlab equivalent: 

>> reaLpart = real(cmplx..rnatrix); *I 
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file: matrix. c 

matrix *scl2mat(double re, double im, int type); 

description: Creates a lxl matrix from the scalar (re + j*im), if type is CMPLX. If type is 

REAL the imaginary part is ignored. 

arguments: FLOATTYPE re Real part. 

FLOA TTYPE im Imaginary part 

returns: matrix * .lxl matrix with the element (re + j*im). NULL if error. 

usage: scalar..mat = scal2mat(3.14, 2.5, CMPLX); // scalarJllat(1,1) = 

3.14 + j*2.5 

scalar..mat = scal2mat(3.14, 2.5, REAL); // scalarJllat(1,1) = 3.14 

void set_fname(char *fname) 

description: This function is used by the integer matrix algebra routines. When entered 

these routines calls seLfname() with their own function names as arguments. 

set_fname() will store the current routine's name and if an overflow /underflow 

is detected by check(), the function name will be put in front of the error 

message produced by check(). That is, suppose int.mul() is called, then 

int..mul() makes the call: set_fname( int_mul: ). If a overflow occurs inside 

inLmul(), check() will set the global error message to "inLmul: 

overflow /underflow". See check() and error() for more details. 

arguments: char *fname 

error() 

String containing pt·cfix to C!TOI' messages produced by 
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returns: nothing 

usage: set_fname(Function name); I* error messages will look like: 

Function name: ... *I 

see also: error(), get_error(), print_error() 

file: conv. c 

INTTYPE check(INTTYPE result) 

description: Checks to if the result of an operation produces an overflow /underflow. When 

doing fixed-point arithmetic check() will inspect the current word length to 

make sure that result is inside the dynamic range. If an overflow or underflow 

occurs, check() will call error() to set the global error string. Pre pended to 

the error message is the string set by set_fname(). That is, suppose after the 

call seUname(int_pmul) an overflow is detected by check(). Then the global 

error string is set to "in_pmul: overflow /underflow", thereby identifying the 

routine which produced the overflow /underflow. The result is returned modulo 

the largest number that can be represented by the current word length. That 

is, if no overflow or underflow occurs the result is returned unchanged. 

arguments: INTTYPE result Result of a fixed-point operation that is to be checked 

for overflow /underflow. 

returns: INTTYPE The reLumcd value is result mod maxiut, where maxiut, is the 

lat·gcst numbet· represcutabl<! with the current word length. 
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usage: INTTYPE a, b, c; c = check(a+b); II e = (a+b) mod maxint, checks 

for overflow 

see also: set_fname(), error(), get_errorO, print_errorO, init_conv() 

file: conv. e 

matrix *sub_matrix(matrix *mat, matrix *rows, matrix *eels); 

description: Returns the rows and columns of mat that are pointed out by (the matrices) 

rows and cols.-The elements of rows and eels are truncated to integers (with 

mfloor()) and are used to pick out rows and columns, respectively. That is, 

suppose mat = [1 2 3; 4 5 6; 7 8 9], and rows= [3.14 1.99] and eels = [2.1], 

then the result would be a matrix of the form [8; 2] (that is, elements (3,2) 

and (1,2)). This is analogous to the matlab statement, mat(rows, eels). To 

just index rows, like matlab's mat( rows, :), set eels to NULL. Similarly, to just 

index columns, like matlab's mat(:, eels), set rows to NULL. By using this 

scheme all indexing can be done with sub_matrix(). 

arguments: matrix *mat Matrix to be indexed. 

matrix *rows Row indexing matrix. 

matrix *eels Column indexing matrix. 

returns: matrix * The indexed input matrix, NULL if error. 

usage: B = sub_matrix (mat, rows, eels); I I B = mat (rows, eels) 

B = sub_matrix(mat, rows, NULL); II B = mat(rows, :) 



B = sub..lllatrix(mat, NULL, eels); I* B = mat (: , eels) 

matlab equivalent: 

>> B = mat(rows, eels); *I 

see also: index_rows (), index_cols (), index_rows_cols () 

note: For greatest convenience, use sub_matrix() for all indexing purposes. 

file: matrix. c 

matrix *transp(matrix *mat) 

description: Returns the transpose of the input matrix. Note: does not conjugate 

elements. Use herm() for conjugate transpose (hermitian). 

arguments: matrix *mat Input matrix. 

returns: matrix * The transposed input matrix, NULL if error. 

usage: tran_A = transp (A) ; I* tran_A = A. ' 

matlab equivalent: 

>>A= A.'; Y. Note 'not ' that is, does not conjugate *I 

see also: hermO 

file: matrix. c 
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I Pin Number I Signal Name I Description 

208-210 BA0-2 Board address. 

211-213 PA0-2 Port address. 

299 XIW* X-bus input FIFO write signal. 

300 YIW* Y-bus FIFO write signal. 

301 XOR* X-bus output FIFO read signal. 

302 AROE* Accumulator to X-bus transport enable. 

303 XBOE* X-bus transport output enable. 

304 VECTORMODE Vector mode signal. 

305 ROE* Adder RAM output enable. 

306 MROE* Multiplier RAM output enable. 

307 XIFLRT* X-bus input FIFO restart. 

308 XIR* X-bus input FIFO read signal. 

309 YIFLRT* Y-bus FIFO restart. 

310 YIR* Y-bus FIFO read signal. 

311 XOFLRT* X-bus output FIFO restart. 

312 XOW* X-bus output FIFO write signal. 

313 AREN* Accumulator to X-bus latch enable. 

314 ARWE* Adder RAM write strobe. 

315 SREN* Accumulator latch enable. 

316 RESBWE* Residue bus write enable. 

317 RESBRE* Residue bus read enable. 

318 CLR* Processor wide clear signal. 

319 PREN* Product latch enable. 

320 YBEN* Y-bus transport latch enable. 

321 XFEN* X-bus to multiplier RAM latch enable. 

322 XBEN* X-bus transport latch enable. 

323 MRWE* Multiplier RAM write enable. 

324 i\lUTHMODE Arithmetic mode signal. 

T;tble 6.1: Gauss M~tchine Processor Control Signals 



Chapter 7 

ALGORITHMS 

As previously stated; the Gauss machine is designed primarily to perform 

level 3 operations[ll]. It also has a vector mode of operation which handles level 

2 and level 1 operations efficiently. Some algorithms for the Gauss machine are 

described below. Although the Gauss machine operates on GEQRNS operands, the 

algorithms are discussed using the familiar notation of complex numbers. 

7.1 Matrix Product Based Algorithms 

This section describes the implementation of the matrix multiplication operation on 

the Gauss machine and implementation of algorithms which are based upon matrix 

multiplication. 

7.1.1 Matrix Multiplication 

If A E cmxn and B E cnxr then AB = D where D E cmxr, and each 

d;j = Lk=t a;kbki· The core of the matrix multiplication is the multiply-accumulate 

operation. 

Suppose we wish to multiply two 2 x 2 matrices. The data are presented in a 

sloped data front on the X and Y sides of the array and the results are accumulated 

in place. This configmat.ion is depicted in Figure 7.1. Note that the processors arc 

configured as simple multiply-accun!ulate units. Each clock cycle, the sloped A and 

B d<tt.a fronts ;u·e advanced one processing clement l.o t.h<> right. and up, respectively, 
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and the input operands are multiplied and accumulated. 

The configuration shown in Figure 7.1 assumes that the array elements are pre-

initialized to zero. The leading zeros keep the array initialized to zero and the trailing 

zeros maintain the results while the computation is completed. This multiplication 

uses 2 x 2 input matrices, however, it can be extended to input matrices where A is 

2 x n and B is n x 2. Matrix multiplication of larger arrays may be achieved by using 

block multiplication. Systolic arrays which use in-place accumulation of results are 

well sui ted to block operations. 

a,, a,, 0 (2, 1) 

(1 '1) 

b, 
b, 
0 

(2,2) 

~ 

(1 ,2) 

0 
b., 
b, 

Figure 7.1: Example of Matrix Multiplication 

The computation of AB where A and B are of arbitrary dimensions can 

be performed by decomposing A into blocks of two rows and n columns, and by 

decomposing B into blocks of n rows and t.wo columns. This decomposition is depicted 
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below: 

AI 
A2 

A= A3 

A; 

where each Ak E C2xn and each B1 E cnx 2 • If a matrix does not have dimensions 

which meet the multiple of three rows or columns requirements, then the matrix may 

be padded with zeros. Each of these matrix block products requires n + 4 cycles to 

complete the computation and two cycles to remove the results from the array. The 

result of the matrix block computation is a 2 x 2 matrix. Thus for A E ckxn and 

B E cnxr, the number of cycles required to complete the product AB is given by 

O(AB) = fk/21 fr/2l(n + 6), (7.1) 

where f •l represents the greatest integer or ceiling function. Clearly from Equa-

tion 7.1, if n is small then the overhead associated with the time required to shift 

data out and the zero padding becomes significant. As n --> 1, the operation de­

generates into an outer product. The dynamic range requirements for the matrix 

multiplication are determined by the size of A and B, and the dynamic range of the 

data in the matrices. To be exact, suppose that A has a dynamic range of p, B has 

a dynamic range of q, and the dimension quantity n is as given above. Then the 

dynamic range requirements for the product AB is given by 

OJJ(AB) = (1' + q) + n- I. (7.2) 
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7 .1. 2 0 is crete Fourier Transform 

The OFT may be easily expressed as a level 3 operation. The OFT is given by the 

following: 
N-i 

X(k) = I:; x(n)e-j2xkn/N. 

n=D 

We may express this ·function in a linear algebraic form by assigning all x( n) 

to a column vector, x E cNxl, and the complex exponential to a Vandermonde 

matrix WE CNxN where W is given by 

1 1 1 1 
w-1 w-2 w-3 w-(N-i) 

w-2 w-4 w-6 w-2(N-i) 

W= w-3 w-6 w-9 w-3(N-i) 

w-(N-i) w-2(N-i) w-3(N-l) w-(N-i)' 

where W = ei2x/N. Thus the OFT of xis given by 

X=WTx 

Where X E cNxl. Clearly W may be precomputed and its form depends 

upon the number of points to be computed and the dynamic range requirements of the 

problem. Obviously, since the Gauss machine performs level 3 operations at greatest 

efficiency when the dimensions of the operand matrices are multiples of two it may 

be desirable to gang three DFTs together by replacing the column vector x with 

an N X 2 matrix where each column of data represents a vector to be transformed. 

Additionally, if only selected frequency bands arc of interest. then the OFT need only 

be computed for those b<uHb. 
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7.1.3 Convolution and Correlation 

Like the DFT, convolution and correlation may be expressed as level 3 operations. 

Recall that discrete correlation and convolution are given by 

X(r) = Lx(~)y(n + r), 
n 

Y(r) = Lx(n)y(r- n), 
n 

respectively. We will develop the correlation example here; convolution follows di­

rectly. Let x and y be data sequences of length Nand M, respectively. The correlation 

of x and y will have-a length of N + M - 1. We will assign the sequence x to a row 

vector x E Clx(N+M-l) given by 

x = ( xo x1 x2 · · · XN-1 I 0 · · · 0 ) . 

The sequence y is used to build a matrix Y E cN+M-IxN+M-1, which when mul­

tiplied with x will give the correlation sequence of x and y. Since xis a row vector 

we would like the columns of Y to be shifted versions of the sequence y. Assuming 

y = {yo, Yh Y2, ... , YM-d, then the matrix Y would have the form 

YM-1 YM-2 YM-3 0 0 0 
0 YM-1 YM-2 0 0 0 
0 0 YM-1 0 0 0 

Y= 0 0 0 0 0 0 

Y1 0 0 
0 0 0 Y2 Y1 0 
0 0 0 Y3 Y2 Y1 

Thus, we can Hee that the product xY will produce the correlation sequence of x and 

y. The above form of the correlation is suboptimal in that it. uses level2 operations to 

perform the correlation operation. Optimal performance is obtained by utili,ing level 
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3 operations to perform the correlation. We will form a new matrix X E C 2xN+M-1 

which contains a shifted version of the row vector x: 

0 0 
XN-1 0 

The form of the matrix X requires that the form of Y be modified so that it 

reflects the shifts in X. The first column of the new version of Y, Y', will produce 

the first three elements of the correlation sequence; the second column will produce 

the next three, and so forth. The form of Y' is given as 

YM-3 YM-6 0 0 

YM-2 YM-5 0 0 

YM-1 YM-4 0 0 
0 YM-3 0 0 
0 YM-2 0 0 
0 YM-1 0 0 

Y' = 0 0 0 0 
0 0 Y1 0 
0 0 Y2 0 

0 0 Y3 0 
0 0 Y4 Y1 
0 0 Ys Y2 
0 0 Y6 Y3 

The product has the form XY' E C 2xf(N+M-1)/21. This level 3 form of 

the correlation operation executes two times faster than the level 2 version, and 

the computational speed of the level 3 algorithm will grow geometrically with N 

for an N x N array, while the level 2 version will only have a linear growth of the 

computational speed on the same array. Additionally, since Y' is banded the structure 

can be exploited to avoid mass multiplication by zeros. 
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7.2 Vector Mode Algorithms 

While many algorithms may be expressed as level3 operations, there are several oper-

ations which may not be performed efficiently on the Gauss machine while operating 

in systolic mode. In order to improve this situation, an architectural enhancement 

was made to allow the Gauss machine to operate in vector mode. The vector mode 

of operation uses a subset of the Gauss machine's processing elements and a mini­

mal amount of additional hardware to form the vector processor. See Figure 6.3 and 

Figure 6.4. 

7.2.1 Vector Addition 

A common operation is the addition of two vectors. While the systolic mode of 

operation can be used accumulate two vectors together, it is very inefficient. Let 

x, y E CN be two vectors which are to be added. In order to add them in the systolic 

mode of operation of the array, they are appended so as to form a matrix Z E cNx2 

such that 

Z=(xly). 

The matrix Z is then multiplied by the matrix (11) to form the sum of the two vectors: 

X+ y = (11) Z. 

This technique may be extended to the accumulation of [( vectors, leading to the 

form 
K-1 

LX;= ( 111 .. · l)(xolxdx21" · x,,._,) · 
i=Cl ----.,--

/\ 
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From Equation 7.1 we know that the number of cycles required to complete the 

product is 

fK/21 (N + 6), 

which produces a total of (K- 1) N complex addition operations. This leads to an 

efficiency metric for systolic mode vector addition given by 

T/AS = (I< - 1) N I dd' . I f J( 
121 

( N + 6) comp ex a 1tions per eye e. 

In the vector mode of addition, the summands are accumulated after being 

multiplied by one. ~he result is that the number of cycles required for the addition 

of J( vectors of length N is given by 

KN + 3, 

thus leading to an efficiency metric of 

2 (I<- 1) N I dd' . I 
T/AV = /( N + 

3 
comp ex a 1t10ns per eye e, 

where the factor of 2 is a result of operating two PEs in tandem as vector accumu­

lators. For large N, and J( even, T/AS ~ T/AV· However, for N large and /( odd, 

then 

T/AV = ]( + 1 
T/AS ]( • 

In general, we would expect the vector method to have slightly better performance 

than the systolic method. 

7.2.2 Pointwise Vector Multiplication 

Pointwise multiplication or vectors is an important operation in signal processmg 

applications. Point.wioe rnull.iplicat.ion or vectors is used to window vecto1·s, and to 
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scale a vector. In systolic mode, a vector of length N may be pointwise multiplied 

by another vector by taking the second vector and placing it on the diagonal of an 

N x N matrix of zeros and then multiplying it with the first vector as follows. Suppose 

x, y E CN. Then the pointwise vector product (denoted by ·*) of these two vectors 

IS 

Xo 0 0 0 
0 Xi 0 0 

X. *Y = 0 y. 

0 0 0 XN-1 

This expression may' be evaluated in a manner which reduces the obvious large order 

of computation by just producing the block matrix products of the vector and the 

2 x 2 submatrices centered along the diagonal. This produces an expression for the 

number of cycles required to execute the pointwise vector product given as IN /218 

cycles. Thus, since this is the number of cycles required to execute N multiplications, 

the efficiency metric is given as 

T/MS = I ~18 complex multiplications per cycle. 

In vector mode, the two vector PEs may multiply pairs of multiplicands in a pipelined 

manner, one product per cycle per PE. Thus, it requires IN /21 cycles to pointwise 

multiply two vectors of length N. This leads to an efficiency metric of 

T/MV = N l l . l' . l IN 121 comp ex mu tip 1catwns per eye e. 

For large N, t.he vect.or mode of opemtion is approximately eight times faster than 

the systolic mode of operation. 
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7.3 QR Decomposition 

An important application of the RNS is the solution of linear equations of the form 

Ax=b. 

Methods such as Gaussian elimination, while amenable to implementation on a vector 

machine, are not as robust as the QR decomposition (QRD). The QR decomposition 

is given below. 

Theorem 2 (QR Factorization) If A E cmxn of rank n, then A can be factored 

into a product QR, where Q E cmxn, and is a matrix with orthonormal columns, 

and R E cnxn and is upper triangular and invertible. 

The ( QRD) can be performed efficiently in the RNS using the Householder re­

flection. The Householder reflection is preferable over the Givens rotation since it does 

not contain transcendental functions. Since the RNS is a division-free integer system 

of arithmetic, it cannot compute transcendental functions efficiently. Additionally, 

Givens rotations suffer from potential finite-precision error conditions to which the 

Householder reflections can be made immune. Finally, the Householder reflection is 

inner-product rich, thus making it ideal for Gauss machine implementation. 

7.3.1 Householder Reflections 

The Householder reflection is an orthogonal vector transformation which is used to 

selectively intmduce zems in a vector by reflecting the vector through a plane. In 

general, the llouseholder reflection is very efficient when used to introduce a large 

nlllnber of zerox into a vector. 
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The Householder reflection introduces zeros into a vector x ol 0 via an orthog­

onal transformation. The transformation matrix, H is defined by 

yyT 

H = 1-2--r, 
v v 

where v, the Householder vector is defined by 

When the Householder matrix is applied to the vector x, we arrive at 

(7.3) 

In computing the Householder vector, v, we may choose to use either of the forms 

v = x + llxll2 e1, or 

v = x- llxll2 e1. 

It is desirable to keep the 2-norm of the Householder vector from becoming small 

since it would result in the scalar vector 2/vTv from Equation 7.3 having a large 

relative error. Thus we may choose v in such a way as to maximize the 2-norm of v: 

Since the RNS is a division-free system of arithmetic, reduction of division operations 

is attractive. Usually, when the Householder transform is used, it is typically used en 

masse. Thus, it is desirable to maintain the individual Householder transform matrix 

as a quotient of the fot·m 
v'~"vl- 2vv'~" 

y'l"y 
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leading to the form 

where 

H' = vTvH 

= vT vi- 2vvT. (7.4) 

This form avoids division, at the expense of consumption of dynamic range. In 

particular, if x is of length N, and the dynamic range of the elements of x is p, then 

the dynamic range of vis (N + l)p. From this we have the dynamic range of vTv 

given by (N + l)p + N- 1. Assuming that N > 2, then we may approximate the 

dynamic range of H' as ( N + 1 )p + N - 1. The next section discusses the application 

of the Householder transform to the problem of the QRD. 

7 .3.2 Householder QR Factorization 

The previous section introduced the use of the Householder transform for the intro­

duction of zeros into a vector. By repeated application of the Householder transfor­

mation, we may decompose a matrix A into an orthogonal matrix and an upper-right 

triangular matrix, as discussed in Theorem 2 in Section 7.3. The following discussion 

will examine the implementation of the QRD using the Householder transformation, 

with special emphasis on the implications of using the transform on the Gauss ma­

chine. 

Suppose we have A E Rmxn, and wish to pl"Oduce the QR decomposition of 

A. Then we must. generate a set·ics of orthogonal transforms which, when applied 

to A, will rt'dure A to upper-right triangular form. Define a series of orthogonal 
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transforms 

where I; is the identity matrix of order i, and H: is of the form of Equation 7.4, 

(7.5) 

where y(i) is defined to be the sub-diagonal entries of the ith column of A. Thus, we 

may successively apply the H;'s to A: 

and thus, 

A=QR, 

where 

7.3.3 Dynamic Range Requirements of the Householder QRD 

Since an overflow condition cannot be detected in an RNS system, it is necessary 

to determine the dynamic range requirements of a given algorithm before it may be 

used with confidence. Computations must proceed assuming a worst-case set of input 

data, unless, some occasional error is acceptable. 

As in the previous section, suppose we have a matrix A E Rmxn, and we 

truncate A to some finite precision where we may represent each a;j with k or fewer 

bits, for all i E {1, 2, 3, ... , m}, j E {1, 2, 3, ... , n}. 

To determine H; we examine Equation 7 .. ). The first tcnn contains an inner 

pmdnct which a.cts as a coefficient. to an identity matrix. The ved.ot· y(i) is determined 
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using Equation 7.3. The dynamic range of vli) is k + 1 bits while v?> has a dynamic 

range of k bits for all j E {2, 3, 4, ... , ( m - i)}. Thus the dynamic range of the inner 

product of Equation 7.5 is 2(k + 1) + r(m- i- 1)/3l 

Proof: 

Let vERn. Then 

where v1 is known to have a dynamic range of k + 1 bits, and all v; have a dynamic 

range of k bits, fori E {1, 2, 3, ... , n}. Thus, 0 (v?) = 2(k + 1) and 0 (vl) = 2k. 

Examining the above summation, we see that the dynamic range is easily computed: 

2k+2 2k 2k 2k ----v? + v~ + v5 + v~ + · · · . 
'--v-' 

2k+l 

2k+2 

(2k+2)+1 

This leads to a dynamic range bound of 2(k + 1) + r(n -1)/31. 

The second term of Equation 7.5 is a scaled outer product. Let B = 2v(i)y(i)T_ 

Then b11 has dynamic range 2( k + 1) + 1 = 2k + 3 while b1p and bj1 have dynamic 

range (k + 1) + k + 1 = 2(k + 1), and b1P has dynamic range k + k + 1 = 2k + 1, for all 

j =f. 1, and all p =f. 1. To summarize these findings, the dynamic range of B is given 

as 
2k +3 2(k + 1) 2(k + 1) 

Ov(B) = 
2(k + 1) 2k + 1 2k + 1 

(7.6) 

2(k + 1) 2k + 1 2k + 1 

Finally, the two terms of Equation 7 .. 5 arc subtracted leading to the final result 

for the dynamic range of Hi. Cle<trly, since the first term is a scaled identity matrix, 

the dynamic' range of the off-diagonal dements will be as given in Equation 7.6. For 
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h:
11

, if ( m - i) ::; 3 then the dynamic range is 2k + 4, else, if ( m - i) > 3 then the 

dynamic range is 2(k + 1) + l(m- i)/31. For the remaining diagonal elements, h: , 
JJ 

j #- 1, the dynamic range is 2(k + 1) + l(m- i)/3l To summarize, 

a; 2(k + 1) 

2(k + 1) b; 2k + 1 

Ov (H:J = 2k + 1 
.. 

2( k + 1) 2k + 1 

where 

{ 
2k +4 

ai = 2(k + 1) + l(m-:- i)/31 

and b; = 2(k + 1) + l(m- i)/31. 

2(k + 1) 

2k + 1 

2k + 1 

2k + 1 b; 

(m- i) ::; 3 
(m- i) > 3 ' 

Clearly, the dynamic range of the above approach quickly gets out of hand. 

An alternative approach is suggested by [11]. This approach relies on a block repre-

sentation and is given below. 

y = y(l) 

W = -2v(1) jv(l)T v(1) 

for j=2:r 

end 

z = -2(1 + WYT)vUl jvUlT vUl 
W = [Wz] 
Y = [YvUl] 

Let the Householder vectors y(i) be used to pre-generate y(i) = -2v(i) jv(i)T y(i). 

Then the above algorithm is modified to take the form given below. 

y = y(l) 

w = y(l) 

for j=2:~· 

end 

z = (I + wYr)vUl 
W=[Wz] 
Y = [YvUl] 
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Clearly the modified algorithm is relatively rich in level 3 operations. As the 

index j increases, the order of computation for the outer product WYT increases 

as the number of columns of W and Y increases, and thus the processor utilization 

mcreases. 



Chapter 8 

SUMMARY AND CONCLUSIONS 

8.1 Motivation 

There is a demonstrable need for high speed front-end signal processors for signal 

and image processing applications. There exist a number of problems (e.g., RADAR, 

communications, video processing) which demand a level of performance which ex­

ceeds the capabilities of the current generation of DSP microprocessors by an order 

of magnitude or more. This need for speed cannot exacerbate existing constraints 

on size, power, reliability, and cost. With this motivation the construction of a pro­

totype array of processors based upon the GEQRNS was undertaken. The goal of 

this prototype was to demonstrate that an array of RNS-based processors could be 

used to obtain high computational throughputs without exacerbating the aforemen­

tioned problems. The Gauss machine was constructed using discrete components as 

a prototype to a VLSI implementation. 

Another goal of the Gauss machine was to demonstrate that an array processor 

could be constructed which would be applicable to a rich set of problems and thus 

demonstrate that a technology which was sub-optimal in the architectural sense could 

be used for a variety of problems, thus affecting a savings in non-recurring engineering 

costs (NREs). Most signal processing problems are rich in inner products which may 

be expressed in tcrn1s of level 1, level 2, or level :3 operations. The Gauss machine 

was designed t.o achi<•ve a high level of effici<•ncy in IWrforming level:) operations, and 
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a lesser, although still excellent, throughput in level 2 and level 1 operations. Many 

signal processing problems can be efficiently stated in terms of level 3 operations, and 

thus this bias towards level 3 operations was created. 

8.2 Results 

There were a number of problems which had to be solved in order to construct the 

Gauss machine. Initially, certain problems in developing an experimental environ­

ment were identified. These problems included packaging constraints, flexibility, and 

portability. Packaging constraints were solved by developing our own prototyping 

environment, the InvestiGATOR. The InvestiGATOR also solved the problems of 

portability and flexibility by incorporating a general purpose computer based upon 

the Motorola 68030 microprocessor, and the inclusion of the SCSI interface for high 

speed, portable communications, and the RS-232C interface for low speed, portable 

communications. The InvestiGATOR solved mechanical packaging constraints en­

countered in earlier efforts by the construction of a large backplane based system. 

The backplane includes broadcast and near-neighbor communications making it suit­

able for a variety of prototyping tasks. Additionally, mechanical constraints were 

reduced to two dimensions (thickness and length) from the three dimensions (thick­

ness, length, and height) found in conventional environments. 

The Gauss machine was constructed on six boards which reside on the Investi­

GATOR backplane. Each of these six boards has a 2 x 2 array of seven-bit GEQRNS 

processors. These processors were constructed using low-cost, commodity discrete 

logic components. The arithmetic elements were implemented with low-cost 32K x 8 

85 ns SRAM. The arithmetic clements (SRAMs) arc the limiting factor in the speed 

of the system: t.he 8!) ns SRAMs arc suitable for a 10 Mil;, clock rate, while :15 ns 
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SRAMs would be suitable for a greater than 20 MHz clock rate, and 15 ns SRAMs· 

could be used to generate a clock rate of 50 MHz. At the 10 MHz clock rate, the 

array achieves an equivalent peak arithmetic rate of 320 million operations per second 

when performing complex arithmetic, compared with conventional processors. Each 

of the processor elements on the board occupies approximately 4.4 in2 of board area 

and is a discrete implementation of a structure which occupies only approximately 

2 mm2 when implemented in the MOSIS 2.0 ttm scalable CMOS process. 

The six processor boards may be configured to act as a single GEQRNS 

array which can process arithmetic word widths of approximately twenty-one bits 

(20.25 bits, or 122 dB). Alternately, the Gauss machine may be configured as a single 

conventional RNS array processor with a dynamic range of approximately thirty-three 

bits. Additionally, the array processor may be configured to operate as a vector pro­

cessor using a subset of the processing elements in the array. While the whole array is 

ideal for level3 operations, it cannot perform level2 and Ievell operations efficiently. 

To solve this problem, a vector sub-processor was carved out of the array. The vector 

sub-processor can be used to efficiently perform level 2 and level 1 operations such 

as matrix-vector, and vector-vector inner products, as well as pointwise addition and 

multiplication. In the vector processor mode, the peak arithmetic rate is equivalent 

to 160 million operations per second when performing complex arithmetic, compared 

to conventional processors. 

One of the original goals of the project that was dropped due to budgetary 

constraints was the construction of forward conversion and CRT engine in hardware. 

The hardware implementation was replaced by a high performance software imple­

mentation which runs on the InvestiGATOR cornmunica.t.ion processor. While this 

loss does prevent the Gauss ma.chin<~ from being used for high speed real-time appli-
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cations, it does not seriously interfere with the goals to be demonstrated since the 

Gauss machine processor array does demonstrate high arithmetic rates. 

In conclusion, the Gauss machine demonstrates a high performance, high RNS 

content architecture for signal processing applications. The Gauss machine performs 

at an equivalent peak processing rate of 320 million operations per second when 

performing complex arithmetic, compared to conventional processors. The Gauss 

machine demonstrates fault tolerance at an architectural level due to the properties 

of the RNS. This discrete implementation of the Gauss machine demonstrates a cost 

parity with conventional, off the shelf technologies, however, substantial cost savings 

can be expected in a VLSI version of this technology, even when produced for rela­

tively short production runs. The Gauss machine also demonstrates an architecture 

which can potentially be scaled into other technologies (e.g., ECL and GaAs) to pro­

duce performance which exceeds that of the Gauss machine by an order of magnitude 

or more, thus yielding performance several orders of magnitude greater than that 

possible with conventional signal processing technology. 



Appendix A 

INVESTIGATOR SCHEMATICS 

r."Y .• _ •••• __ .._ 

Figure A.l: InvestiGATOR CPU Module 
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Figure A.2: InvestiGATOR SCRAM Module 
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Figure A.3: InvestiGATOR ROM Module 
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Figure A.4: InvestiGATOR I/0 Module 
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Figure A.5: InvestiGATOR SCSI Module 
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Figure A.6: InvestiGATOR SIO Module 
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Figure A.7: InvestiGATOR Array Bus Interface 
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Figure A.S: InvestiGATOR Miscellaneous Module 
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Figure A.9: InvestiGATOR Array Bus, First Part 
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Figure A.lO: InvestiGATOR Array Bus, Second Part 
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Figure A.ll: InvestiGATOR Array Bus, Third Part 
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Figure A.12: InvestiGATOR I/0 Expansion Bus 
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Figure A.l3: InvestiGATOR Bypass Capacitors 



Appendix B 

INVESTIGATOR STATE MACHINES 

F 

F 

S2 

BERR 

Figure B.l: Bus Error Detection State Machine 
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SO <Power-up) 

Title• EPROM Controller Sto. te 

~M~a~c~hl~n•~~~~~~~~~ 
Author1 Jon Mellott 

L Do. tee 5/27/90 Rev• 0.2 

Figure B.2: ROM Controller State Machine 
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Figure B.3: SCRAM Controller State Machine 
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SO (Power-up) 

Figure B.4: SBIC Controller State Machine 
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SO <Power-u > 

Figure B.5: SIO Controller State Machine 



Appendix C 

INVESTIGATOR PROGRAMMABLE LOGIC DEVICE LISTINGS 

This appendix contains lists for the InvestiGATOR PLDs. These PLDs are 

used throughout the InvestiGATOR. 

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST. 

C.l MACHlC 

C.2 MACH2 

C.3 MACH3XA 

C.4 PALO 

C.5 PALlA 

C.6 PAL3B 

C.7 PAL4 

C.8 PAL5 

C.9 PAL7 

C.lO PAL12 

I 

/~ 



Appendix D 

INVESTIGATOR SOURCE CODE 

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST. 

D.l Link Specification File: BACKPLAN.LNK 

D.2 Basic Type Definitions: BASETYPE.H 

D.3 I/0 Constants: INVESTIO.INC 

D.4 Base Firmware: BACKPLAN.C 

D.5 QRNS Conversion Code: CONVERT.C 

D.6 Monitor: MONITOR.C 

D.7 Serial I/0 Code: ESCC.C 

D.S SCSI I/0 Code: SBIC.C 

D.9 Interrupt Service Routines: ISR.M68 

D.lO POST and Initialization: POSTINIT.M68 

D.ll C Startup Code: STARTUP.M68 



Appendix E 

GAUSS MACHINE SCHEMATICS 

Figure E.l: Gauss Array 
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Figure E.2: Gauss Array Miscellaneous 
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Figure E.3: Gauss Array Instruction Decoding 
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Appendix F 

GAUSS MACHINE PROGRAMMABLE LOGIC DEVICE LISTINGS 

This appendix contains listings for the Gauss machine controller's PLDs. 

These PLDs are used for decoding instructions from the microsequencer, and in­

terface glue between the InvestiGATOR and the controller. 

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST. 

F.l PAL Listings 

F.l.l PALCLPDS 

F.l.2 PALC2.PDS 

F.l.3 PALC3.PDS 

F.l.4 PALC4.PDS 

F.l.5 PALC5.PDS 

F.l.6 PALC6.PDS 

F.l.7 PALC7.PDS 

F.l.S PALCS.PDS 

F.l.9 PALC9.PDS 



Appendix G 

GAUSS MACHINE MICROCODE 

This appendix lists the Gauss machine microcode. This microcode is written 

for Advanced Microdevices' ASM14x microcode assembler. This microcode assem­

bler emits object code for AMD's Am29PL14x/15x family of EPROM based microse­

quencers. The listing in Section G.l is the source for the microcode. Section G.2 

describes the microcode and microinstructions. 

G.l Gauss Machine Microcode Listing 

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST. 

G.2 Gauss Machine Microcode Description 



Appendix H 

MACINTOSH API SOURCE CODE 

H.l 

H.2 

H.3 

H.4 

H.5 

H.6 

H.7 

H.8 

H.9 

H.lO 

This appendix contains source code for the Macintosh/Gauss machine API. 

NOTE: THIS MATERIAL IS AVAILABLE UPON REQUEST. 

TYPES.H 

CONV.H 

INTMATRIX.H 

INTMATRIX.C 

LIST.H 

LIST.C 

MATRIX.H 

MATRIX.C 

UTILS.H 

UTILS.C 
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